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Abstract—The opportunities laid by the joint use of Peer-to-
Peer (P2P) streaming systems and advanced Digital Fountain 
(DF) codes in the context of Internet Protocol TeleVision (IPTV) 
platforms have set high expectations for their combined use. P2P 
streaming strategies, on one hand, have proven to be able to 
increase the bandwidth efficiency and the consequent scalability 
of IPTV platforms. DFs, on the other, have found a potential role 
in improving the bandwidth efficiency and the robustness to high 
peer churn rates of P2P streaming systems. However, given the 
complexity of both of such systems and the unexpected possible 
outputs that may result from their interaction, an effective 
assessment of their performances requires the design and setup of 
real world test-beds. In this article we describe the results 
deriving from a set of experiments performed on a P2P streaming 
test-bed that integrates DFs. The most prominent result of this 
experimentation campaign is that DFs do not provide notable 
improvements to a BitTorrent-based network of limited size, 
while as the network scales beyond a given size, it is possible to 
observe important advantages. This work, and, in particular, 
assessing when the use of DFs can be beneficial, can influence the 
devise of future IPTV service architecture which could be based 
on such technologies. We believe this represents a relevant 
contribution to understanding important aspects of the joint 
utilization of peer-to-peer multimedia streaming strategies and 
advanced digital fountain techniques. 
 

Index Terms—Coding techniques, digital fountains, peer-to-
peer, streaming. 

I. INTRODUCTION 

The recent successful and steady growth of the 
Internet Protocol TeleVision (IPTV) market, which 
analysts expect will keep its momentum going 
despite the recent economical breakdown, has 
triggered the research for innovative and efficient 
distribution strategies [1]-[3]. In fact, thanks to a 
trend where commercial IPTV channels distribute 
an increasingly wide range of content that spans 
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from real-time streaming videos (e.g., soccer 
matches) to on-demand content (e.g., classic 
movies), about 27 million new IPTV contract 
services have been signed up in 2009. Considering 
such figure and recent researches that predict a 50% 
yearly worldwide market expansion for the next 
decade, the expected demand for multimedia 
content and, consequently, for larger amounts of 
bandwidth will steeply increase. In such scenario, 
the over provisioning of core and access network 
resources and the gradual adoption of multicast-
capable routers may be too expensive and slow, 
respectively, to keep up with such exponential 
growth rate.  

A possible way of guaranteeing the scalability of 
an IPTV distribution network, while confining the 
amount of investments and, contemporarily, 
achieving the desired results, is the integration of a 
Peer-to-Peer (P2P) infrastructure [4]-[12]. In 
particular, P2P distribution strategies have received 
great attention in the context of IPTV streaming 
platforms because of two particularly attractive 
properties: a) their software modules can be easily 
ported on Set-Top-Boxes (STB), and; b) they utilize 
the upload bandwidth of peers, resource that would 
otherwise probably be left unexploited and, 
therefore, unnecessarily wasted. Although 
promising, however, the opportunity of adopting 
P2P streaming strategies within commercial IPTV 
platforms is still under investigation. In fact, 
channels that rely on P2P streaming systems are 
usually affected by delays (i.e., end-to-end and 
startup delays) that are typically much higher than 
those we are all accustomed to when watching 
traditional analog TV sets, and are also affected by 
service degradations (e.g., losses of video frames) 
that can be caused by sudden changes in the P2P 
network topology (e.g., users that switch on or off 
their STBs).  
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Digital Fountains (DFs) could be the missing 
piece of the puzzle as they can potentially combat 
the main shortcomings of P2P streaming strategies, 
alleviating, for example, the degradations that may 
occur as a consequence of high churn rates [13]. In 
brief, while in traditional P2P streaming networks 
packet losses directly turn into a loss of 
information, in DF-based P2P streaming networks 
the same events may be successfully dealt with 
combining other packets that have already been or 
will shortly thereafter be received.  

As a result of the possible synergies that may 
exist between DFs and P2P streaming techniques, a 
plethora of approaches have been devised aiming at 
optimizing their combined usage. However, much 
of the work that has been so far carried out bases its 
conclusions on theoretical analysis and simulations. 
In this paper, instead, we will describe our 
experience in designing and building a DF + P2P 
streaming test-bed and show the advantages that, in 
reality, can be expected from their combined use. 
Our major finding, in particular, is that DFs can 
provide significant advantages to a P2P streaming 
architecture based on a mesh topology, but only as 
the network exceeds a given size. When mesh P2P 
streaming networks are of small size (below 100 
nodes), in fact, DFs actually reduce the download 
speed of multimedia flows, as the amount of 
overhead introduced by their use weighs more than 
their beneficial effects. Such information, for 
example, is very useful when predicting the size 
beyond which an IPTV platform can successfully 
rely on a DF + P2P architecture, although it results 
tricky to obtain without a real test-bed evaluation.  

The rest of this paper is organized as follows. In 
Section II we provide an illustrative example of 
how digital fountains can be useful alleviating the 
degradation effects that are due to packet losses. In 
Section III we describe the architecture of our test-
bed infrastructure, while in Section IV we provide a 
comparison between a P2P architecture that 
employs DFs and one that does not. We finally 
conclude with Section V. 

 

II. BACKGROUND 

Since P2P streaming techniques have received 
great attention in the past decade and their 
underlying mechanisms are supposedly well known 
to most audiences, we will here concentrate our 
efforts to describing how digital fountains work.   

The main idea that lies at the basis of digital 
fountains is the introduction of redundant 
information in the packets that are sent over the 
network, so that packet losses and client failures 
may be more easily dealt with. This process, 
however, should not be confused with a simple 
procedure where the same packets are merely 
retransmitted to the same peers. With digital 
fountains, in fact, all packets are unique, although 
they enclose and convey information related to, 
possibly, the entire source of information (e.g., a 
multimedia stream). To explain this concept more 
effectively, we will rely on the following 
comparison.  

Let us now consider a scenario where a node, 
which we will from now on call K, attempts to 
download from its peers, namely A, B, C, D, E, and 
F, a video stream composed of three pieces: x, y and 
z. Assume digital fountains are not employed and 
that K proceeds making the following requests: 
piece x to A and B, y to C and D, and z to E and F 
(leftmost part of Figure 1). Furthermore, letting us 
also assume that there is a 50% chance that a 
requested piece is lost, the following might occur. K 
receives the pieces sent by A, B and C (ending up 
with two copies of x and one of y), while misses the 
ones sent by D, F and E (being unable to retrieve a 
copy of z). Therefore, after this first round, K still 
needs to issue a request to receive z. This example 
exposes one drawback of the Automatic Repeat 
request (ARQ) paradigm: longer delays and greater 
overheads are induced by retransmission requests.  

Now, we will describe what would have happened 
if a trivial digital fountain scheme such as a 
Forward Error Correction (FEC) mechanism were 
employed. Using FEC at all peers, the symbols that 
are transferred result from the XOR operation 
between the pieces that compose the stream.
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Fig.1. ARQ vs. FEC strategies. 

 
Therefore, the following might have occurred 
(rightmost part of Figure 1): K receives M (x XOR 
y) from peer A, N (x XOR y XOR z) from B and O 
(y XOR z) from C. Alike the previous case, 50% of 
the requested pieces are lost, but now K can obtain 
the original video decoding the received pieces (i.e., 
x = (N XOR O), y = (M XOR N XOR O) and z = (M 
XOR N). Clearly, in this case, no further requests 
are necessary and, consequently, no further use of 
bandwidth resources. However, quantifying the 
potential of the combined use of digital fountains 
and P2P schemes, providing a thorough 
understanding of their capabilities (e.g., increased 
bandwidth use) and possible negative aspects (e.g., 
overhead and complexity), requires a test-bed 
evaluation, as we will see in the following Section.   
 

III. TEST-BED 

Aiming at quickly obtaining the implementation 
of a client that resulted compliant with BitTorrent, 
we first proceeded integrating a digital fountain 
scheme on top of a modified version of the mainline 
BitTorrent client [11]. After this step, in order to 
realize an assessment, we installed our client on the 

nodes of the PlanetLab infrastructure and performed 
a set of experiments that we will here shortly 
describe [14]. However, before moving on to the 
results of our experimentation campaign, we will 
summarize how our client works.  

First of all, each client applies DF encoding on 
the available 16KB long blocks that compose the 
pieces of a multimedia stream (i.e., streams are 
composed of multiple pieces, which, in turn, are 
composed of multiple blocks). The particular DF 
instance that we implemented is Raptor coding, 
using the Python programming language [15]. A set 
of tests (500 runs) performed on our encoder and 
decoder modules have shown that on PlanetLab 
nodes, for a piece size of 128 blocks, the coding and 
decoding times never exceeds 500 and 400 
milliseconds, respectively.  

Second, at the application layer our client, say A, 
behaves as a BitTorrent client that is in end-game 
mode, thus always asking all of its known un-
choked (i.e., peers that may answer requests) 
neighbors for random blocks (BitTorrent adopts this 
strategy only in the final phase of a download). 
Moreover, in order to increase the number of 
random blocks that propagate through the network, 

96 BitFountain: codici fountain applicati a BitTorrent

ulteriori trasmissioni) in caso di perdita di tutte le copie di un particolare
pezzo. Si assuma ora di utilizzare la codifica raptor descritta nel capitolo

Figura 4.1: Esempio p2p ARQ

2. Ogni blocco inviato è il risultato del XOR dei pezzi del file che stiamo
trasferendo. Grazie a questa codifica non si inoltrano direttamente i pezzi x,
y, z ma dei simboli portanti informazione su più di un pezzo. Utilizzando
lo stesso canale con il 50% di pacchetti perduti riceveremo solo tre simboli
codificati dei sei inviati: M = x⊕ y, N = x⊕ y⊕ z e O = y⊕ z. É possibile
decodificare i tre pezzi originali in questo modo:

1. x = N ⊕O

2. y = M ⊕N ⊕O

3. z = M ⊕N

Come si può notare in figura 4.2 non c’è alcun bisogno di ritrasmissione. Una
volta ricevuti abbastanza simboli è possibile decodificare i pezzi di partenza.

4.1 Introduzione 97

É possibile fare un parallelismo tra questo esempio e il download in Bit-

Figura 4.2: Esempio p2p FEQ

Torrent: il file di questo scenario è assimilabile al piece, ed i pezzi di file ai
block. Tutte le considerazioni sopra riportate restano valide.
Si consideri ora un altro scenario in cui vi sia un trasmettitore X ed un rice-
vitore Y ; quest’ultimo vuole un file che X possiede, ma non ha la possibilità
di inviare messaggi di avvenuta ricezione comunicando attraverso un canale
di tipo BEC con una perdita del 50%. Una possibilità consiste nel inviare
tutte le parti del file secondo un ciclo round robin come mostrato in figura 4.3
ed Y può disconnettersi una volta ricevuto tutto il necessario. É possibile
stimare l’overhead generato da questa soluzione nel seguente modo:

• per ogni blocco inviato la probabilità che esso sia ricevuto è 1-p e p è
la probabilità che esso vada perso;

• nella prima iterazione del round robin verranno ricevuti K(1− p);

!"#$ %&'$
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A sends two requests, instead of one, per each block 
within a piece: a high priority one and a low priority 
one (a peer serves low priority requests only after 
all the high priority ones have been dealt with). In 
turn, when a peer, for example B, receives a request 
from A for a random block inside a piece, say P, it 
proceeds: i) randomly selecting a subset of blocks 
within P, ii) XORing them, and, iii) obtaining a 
random block that is readily sent. When A receives 
the block that was sent by B, it stores it in a buffer 
specifically allocated to piece P and attempts to 
obtain P using all of the random blocks that have 
been so far accumulated in the buffer. If the 
decoding process fails (e.g., it can be determined 
performing a hash check), A issues new requests to 
collect a number of random blocks that is sufficient 
to reconstruct P.  

Finally, at the transport layer, instead of the TCP 
connections utilized in BitTorrent, our DF-based 
client utilizes unreliable UDP segments to transfer 
data between peers. Such decision follows from the 
general design choice of dealing with the loss of 
any data with DF techniques, rather than with ARQ 
ones.  
  

IV. RESULTS AND DISCUSSION 

We performed a testing campaign using a single 
seed (i.e., one multimedia server) and 170 
PlanetLab peers located all around the world. All 
nodes within the P2P streaming network, including 
the seed, were allowed a maximum upload speed of 
1.6 Mb/s.  

Our first test has been that of assessing the 
download completion time at all peers of a 30 MB 
video for a fixed piece size of 2 MB. In Figure 2 we 
plot the download completion time as a function of 
the peer index for four different P2P streaming 
client types: A) BitFountain (i.e., our DF-based 
BitTorrent client), B) a BitFountain client that 
employs TCP at the transport layer and where all 
the coding and decoding operations are pre-
computed in advance, C) a BitFountain client 
where, again, all the coding and decoding 
operations are pre-computed, and, D) BitTorrent.  

Interestingly, a comparison between the 
completion times of BitFountain (i.e., A) and 
BitFountain with pre-coding (i.e., C) indicates that 

about 30 seconds are wasted in the coding and 
decoding process. Moreover, as lower completion 
times typically correspond to better IPTV 
performance values, a first analysis of Figure 2 
indicates that BitFountain clients with pre-coding 
achieve more or less the same performance of their 
BitTorrent counterparts (we are allowed to assume 
coding and decoding delays negligible, as the 
modules that perform these operations can be 
efficiently implemented in hardware). However, 
with a more attentive inspection, we also find that 
the BitFountain clients with pre-coding improve on 
the BitTorrent clients when the network size 
exceeds 100 peers. This fact can be readily 
explained as follows.  A larger network means that 
more un-choked peers are available for 
downloading blocks. Nonetheless, when utilizing 
BitTorrent clients, only part of the peers owns the 
requested blocks and, contemporarily, is provided 
of sufficient upload bandwidth. This event, instead, 
rarely occurs when utilizing BitFountain clients, 
where there is a high chance that the nodes that can 
dispose of spare upload bandwidth also own 
random blocks that may be useful in the decoding 
process. Interestingly, we are only capable of 
capturing the beginning of a trend where the 
positive features of DFs void the negative effects of 
overhead in BitFountain, thus improving over the 
performance of BitTorrent. 

For completeness, we also tested the effects of 
utilizing TCP at the transport layer of BitFountain 
(i.e., client B). As we could have expected, the 
interferences produced by the interactions between 
the ARQ mechanism of TCP and the Raptor code 
implemented within BitFountain provide poor 
results (a similar result concerning the interference 
of protocol layers may be found in [16]-[18]). 

Finally, we decided to verify the effect of varying 
the piece size within BitFountain with pre-coding 
and BitTorrent while keeping the default block size 
(16 KB) fixed. Figure 3 shows that increasing the 
piece size, from a value of 64 KB to a value of 8 
MB increases the completion time of both schemes, 
although BitFountain in this case suffers this test 
less than BitTorrent, as it is capable of slightly 
improving its performance. This result was largely 
expected for both schemes, as it is well known that    
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Fig.2. BitFountain vs. BitTorrent download times with and without pre-
encoding and pre-decoding. 

 
smaller piece sizes   correspond to more efficient 
download experiences in BitTorrent [11]. 
 

V. CONCLUSION 

We here offered a set of experimental results 
performed on a real digital fountain P2P streaming 
test-bed. We believe this work provides a useful aid 
in determining how P2P and coding strategies can 
be put to good use for the implementation of next-
generation IPTV platforms. 
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