

1

Abstract—The opportunities laid by the joint use of Peer-to-
Peer (P2P) streaming systems and advanced Digital Fountain
(DF) codes in the context of Internet Protocol TeleVision (IPTV)
platforms have set high expectations for their combined use. P2P
streaming strategies, on one hand, have proven to be able to
increase the bandwidth efficiency and the consequent scalability
of IPTV platforms. DFs, on the other, have found a potential role
in improving the bandwidth efficiency and the robustness to high
peer churn rates of P2P streaming systems. However, given the
complexity of both of such systems and the unexpected possible
outputs that may result from their interaction, an effective
assessment of their performances requires the design and setup of
real world test-beds. In this article we describe the results
deriving from a set of experiments performed on a P2P streaming
test-bed that integrates DFs. The most prominent result of this
experimentation campaign is that DFs do not provide notable
improvements to a BitTorrent-based network of limited size,
while as the network scales beyond a given size, it is possible to
observe important advantages. This work, and, in particular,
assessing when the use of DFs can be beneficial, can influence the
devise of future IPTV service architecture which could be based
on such technologies. We believe this represents a relevant
contribution to understanding important aspects of the joint
utilization of peer-to-peer multimedia streaming strategies and
advanced digital fountain techniques.

Index Terms—Coding techniques, digital fountains, peer-to-
peer, streaming.

I. INTRODUCTION

The recent successful and steady growth of the
Internet Protocol TeleVision (IPTV) market, which
analysts expect will keep its momentum going
despite the recent economical breakdown, has
triggered the research for innovative and efficient
distribution strategies [1]-[3]. In fact, thanks to a
trend where commercial IPTV channels distribute
an increasingly wide range of content that spans

Manuscript received October 12, 2010.
A. Cattaneo, A. Sentinelli, A. Vitali and L. Celetto are with

STMicroelectronics, Agrate Brianza, Italy (email:
alessandro.cattaneo@st.com, alexandro.sentinelli@st.com,
andrea.vitali@st.com, luca.celetto@st.com).

G. Marfia (corresponding author) and M. Roccetti are with the Computer
Science Department, University of Bologna, Bologna Italy (e-mail:
marfia@cs.unibo.it, roccetti@cs.unibo.it).

M. Gerla is with the Computer Science Department, University of
California, Los Angeles, USA (e-mail: gerla@cs.ucla.edu).

from real-time streaming videos (e.g., soccer
matches) to on-demand content (e.g., classic
movies), about 27 million new IPTV contract
services have been signed up in 2009. Considering
such figure and recent researches that predict a 50%
yearly worldwide market expansion for the next
decade, the expected demand for multimedia
content and, consequently, for larger amounts of
bandwidth will steeply increase. In such scenario,
the over provisioning of core and access network
resources and the gradual adoption of multicast-
capable routers may be too expensive and slow,
respectively, to keep up with such exponential
growth rate.

A possible way of guaranteeing the scalability of
an IPTV distribution network, while confining the
amount of investments and, contemporarily,
achieving the desired results, is the integration of a
Peer-to-Peer (P2P) infrastructure [4]-[12]. In
particular, P2P distribution strategies have received
great attention in the context of IPTV streaming
platforms because of two particularly attractive
properties: a) their software modules can be easily
ported on Set-Top-Boxes (STB), and; b) they utilize
the upload bandwidth of peers, resource that would
otherwise probably be left unexploited and,
therefore, unnecessarily wasted. Although
promising, however, the opportunity of adopting
P2P streaming strategies within commercial IPTV
platforms is still under investigation. In fact,
channels that rely on P2P streaming systems are
usually affected by delays (i.e., end-to-end and
startup delays) that are typically much higher than
those we are all accustomed to when watching
traditional analog TV sets, and are also affected by
service degradations (e.g., losses of video frames)
that can be caused by sudden changes in the P2P
network topology (e.g., users that switch on or off
their STBs).

Digital Fountains + P2P for Future IPTV
Platforms: An Infrastructure Evaluation

G. Marfia, M. Roccetti, A. Cattaneo, A. Sentinelli, A. Vitali, L. Celetto, M. Gerla, Fellow, IEEE

2

Digital Fountains (DFs) could be the missing
piece of the puzzle as they can potentially combat
the main shortcomings of P2P streaming strategies,
alleviating, for example, the degradations that may
occur as a consequence of high churn rates [13]. In
brief, while in traditional P2P streaming networks
packet losses directly turn into a loss of
information, in DF-based P2P streaming networks
the same events may be successfully dealt with
combining other packets that have already been or
will shortly thereafter be received.

As a result of the possible synergies that may
exist between DFs and P2P streaming techniques, a
plethora of approaches have been devised aiming at
optimizing their combined usage. However, much
of the work that has been so far carried out bases its
conclusions on theoretical analysis and simulations.
In this paper, instead, we will describe our
experience in designing and building a DF + P2P
streaming test-bed and show the advantages that, in
reality, can be expected from their combined use.
Our major finding, in particular, is that DFs can
provide significant advantages to a P2P streaming
architecture based on a mesh topology, but only as
the network exceeds a given size. When mesh P2P
streaming networks are of small size (below 100
nodes), in fact, DFs actually reduce the download
speed of multimedia flows, as the amount of
overhead introduced by their use weighs more than
their beneficial effects. Such information, for
example, is very useful when predicting the size
beyond which an IPTV platform can successfully
rely on a DF + P2P architecture, although it results
tricky to obtain without a real test-bed evaluation.

The rest of this paper is organized as follows. In
Section II we provide an illustrative example of
how digital fountains can be useful alleviating the
degradation effects that are due to packet losses. In
Section III we describe the architecture of our test-
bed infrastructure, while in Section IV we provide a
comparison between a P2P architecture that
employs DFs and one that does not. We finally
conclude with Section V.

II. BACKGROUND

Since P2P streaming techniques have received
great attention in the past decade and their
underlying mechanisms are supposedly well known
to most audiences, we will here concentrate our
efforts to describing how digital fountains work.

The main idea that lies at the basis of digital
fountains is the introduction of redundant
information in the packets that are sent over the
network, so that packet losses and client failures
may be more easily dealt with. This process,
however, should not be confused with a simple
procedure where the same packets are merely
retransmitted to the same peers. With digital
fountains, in fact, all packets are unique, although
they enclose and convey information related to,
possibly, the entire source of information (e.g., a
multimedia stream). To explain this concept more
effectively, we will rely on the following
comparison.

Let us now consider a scenario where a node,
which we will from now on call K, attempts to
download from its peers, namely A, B, C, D, E, and
F, a video stream composed of three pieces: x, y and
z. Assume digital fountains are not employed and
that K proceeds making the following requests:
piece x to A and B, y to C and D, and z to E and F
(leftmost part of Figure 1). Furthermore, letting us
also assume that there is a 50% chance that a
requested piece is lost, the following might occur. K
receives the pieces sent by A, B and C (ending up
with two copies of x and one of y), while misses the
ones sent by D, F and E (being unable to retrieve a
copy of z). Therefore, after this first round, K still
needs to issue a request to receive z. This example
exposes one drawback of the Automatic Repeat
request (ARQ) paradigm: longer delays and greater
overheads are induced by retransmission requests.

Now, we will describe what would have happened
if a trivial digital fountain scheme such as a
Forward Error Correction (FEC) mechanism were
employed. Using FEC at all peers, the symbols that
are transferred result from the XOR operation
between the pieces that compose the stream.

3

Fig.1. ARQ vs. FEC strategies.

Therefore, the following might have occurred
(rightmost part of Figure 1): K receives M (x XOR
y) from peer A, N (x XOR y XOR z) from B and O
(y XOR z) from C. Alike the previous case, 50% of
the requested pieces are lost, but now K can obtain
the original video decoding the received pieces (i.e.,
x = (N XOR O), y = (M XOR N XOR O) and z = (M
XOR N). Clearly, in this case, no further requests
are necessary and, consequently, no further use of
bandwidth resources. However, quantifying the
potential of the combined use of digital fountains
and P2P schemes, providing a thorough
understanding of their capabilities (e.g., increased
bandwidth use) and possible negative aspects (e.g.,
overhead and complexity), requires a test-bed
evaluation, as we will see in the following Section.

III. TEST-BED

Aiming at quickly obtaining the implementation
of a client that resulted compliant with BitTorrent,
we first proceeded integrating a digital fountain
scheme on top of a modified version of the mainline
BitTorrent client [11]. After this step, in order to
realize an assessment, we installed our client on the

nodes of the PlanetLab infrastructure and performed
a set of experiments that we will here shortly
describe [14]. However, before moving on to the
results of our experimentation campaign, we will
summarize how our client works.

First of all, each client applies DF encoding on
the available 16KB long blocks that compose the
pieces of a multimedia stream (i.e., streams are
composed of multiple pieces, which, in turn, are
composed of multiple blocks). The particular DF
instance that we implemented is Raptor coding,
using the Python programming language [15]. A set
of tests (500 runs) performed on our encoder and
decoder modules have shown that on PlanetLab
nodes, for a piece size of 128 blocks, the coding and
decoding times never exceeds 500 and 400
milliseconds, respectively.

Second, at the application layer our client, say A,
behaves as a BitTorrent client that is in end-game
mode, thus always asking all of its known un-
choked (i.e., peers that may answer requests)
neighbors for random blocks (BitTorrent adopts this
strategy only in the final phase of a download).
Moreover, in order to increase the number of
random blocks that propagate through the network,

96 BitFountain: codici fountain applicati a BitTorrent

ulteriori trasmissioni) in caso di perdita di tutte le copie di un particolare
pezzo. Si assuma ora di utilizzare la codifica raptor descritta nel capitolo

Figura 4.1: Esempio p2p ARQ

2. Ogni blocco inviato è il risultato del XOR dei pezzi del file che stiamo
trasferendo. Grazie a questa codifica non si inoltrano direttamente i pezzi x,
y, z ma dei simboli portanti informazione su più di un pezzo. Utilizzando
lo stesso canale con il 50% di pacchetti perduti riceveremo solo tre simboli
codificati dei sei inviati: M = x⊕ y, N = x⊕ y⊕ z e O = y⊕ z. É possibile
decodificare i tre pezzi originali in questo modo:

1. x = N ⊕O

2. y = M ⊕N ⊕O

3. z = M ⊕N

Come si può notare in figura 4.2 non c’è alcun bisogno di ritrasmissione. Una
volta ricevuti abbastanza simboli è possibile decodificare i pezzi di partenza.

4.1 Introduzione 97

É possibile fare un parallelismo tra questo esempio e il download in Bit-

Figura 4.2: Esempio p2p FEQ

Torrent: il file di questo scenario è assimilabile al piece, ed i pezzi di file ai
block. Tutte le considerazioni sopra riportate restano valide.
Si consideri ora un altro scenario in cui vi sia un trasmettitore X ed un rice-
vitore Y ; quest’ultimo vuole un file che X possiede, ma non ha la possibilità
di inviare messaggi di avvenuta ricezione comunicando attraverso un canale
di tipo BEC con una perdita del 50%. Una possibilità consiste nel inviare
tutte le parti del file secondo un ciclo round robin come mostrato in figura 4.3
ed Y può disconnettersi una volta ricevuto tutto il necessario. É possibile
stimare l’overhead generato da questa soluzione nel seguente modo:

• per ogni blocco inviato la probabilità che esso sia ricevuto è 1-p e p è
la probabilità che esso vada perso;

• nella prima iterazione del round robin verranno ricevuti K(1− p);

!"#$ %&'$

4

A sends two requests, instead of one, per each block
within a piece: a high priority one and a low priority
one (a peer serves low priority requests only after
all the high priority ones have been dealt with). In
turn, when a peer, for example B, receives a request
from A for a random block inside a piece, say P, it
proceeds: i) randomly selecting a subset of blocks
within P, ii) XORing them, and, iii) obtaining a
random block that is readily sent. When A receives
the block that was sent by B, it stores it in a buffer
specifically allocated to piece P and attempts to
obtain P using all of the random blocks that have
been so far accumulated in the buffer. If the
decoding process fails (e.g., it can be determined
performing a hash check), A issues new requests to
collect a number of random blocks that is sufficient
to reconstruct P.

Finally, at the transport layer, instead of the TCP
connections utilized in BitTorrent, our DF-based
client utilizes unreliable UDP segments to transfer
data between peers. Such decision follows from the
general design choice of dealing with the loss of
any data with DF techniques, rather than with ARQ
ones.

IV. RESULTS AND DISCUSSION

We performed a testing campaign using a single
seed (i.e., one multimedia server) and 170
PlanetLab peers located all around the world. All
nodes within the P2P streaming network, including
the seed, were allowed a maximum upload speed of
1.6 Mb/s.

Our first test has been that of assessing the
download completion time at all peers of a 30 MB
video for a fixed piece size of 2 MB. In Figure 2 we
plot the download completion time as a function of
the peer index for four different P2P streaming
client types: A) BitFountain (i.e., our DF-based
BitTorrent client), B) a BitFountain client that
employs TCP at the transport layer and where all
the coding and decoding operations are pre-
computed in advance, C) a BitFountain client
where, again, all the coding and decoding
operations are pre-computed, and, D) BitTorrent.

Interestingly, a comparison between the
completion times of BitFountain (i.e., A) and
BitFountain with pre-coding (i.e., C) indicates that

about 30 seconds are wasted in the coding and
decoding process. Moreover, as lower completion
times typically correspond to better IPTV
performance values, a first analysis of Figure 2
indicates that BitFountain clients with pre-coding
achieve more or less the same performance of their
BitTorrent counterparts (we are allowed to assume
coding and decoding delays negligible, as the
modules that perform these operations can be
efficiently implemented in hardware). However,
with a more attentive inspection, we also find that
the BitFountain clients with pre-coding improve on
the BitTorrent clients when the network size
exceeds 100 peers. This fact can be readily
explained as follows. A larger network means that
more un-choked peers are available for
downloading blocks. Nonetheless, when utilizing
BitTorrent clients, only part of the peers owns the
requested blocks and, contemporarily, is provided
of sufficient upload bandwidth. This event, instead,
rarely occurs when utilizing BitFountain clients,
where there is a high chance that the nodes that can
dispose of spare upload bandwidth also own
random blocks that may be useful in the decoding
process. Interestingly, we are only capable of
capturing the beginning of a trend where the
positive features of DFs void the negative effects of
overhead in BitFountain, thus improving over the
performance of BitTorrent.

For completeness, we also tested the effects of
utilizing TCP at the transport layer of BitFountain
(i.e., client B). As we could have expected, the
interferences produced by the interactions between
the ARQ mechanism of TCP and the Raptor code
implemented within BitFountain provide poor
results (a similar result concerning the interference
of protocol layers may be found in [16]-[18]).

Finally, we decided to verify the effect of varying
the piece size within BitFountain with pre-coding
and BitTorrent while keeping the default block size
(16 KB) fixed. Figure 3 shows that increasing the
piece size, from a value of 64 KB to a value of 8
MB increases the completion time of both schemes,
although BitFountain in this case suffers this test
less than BitTorrent, as it is capable of slightly
improving its performance. This result was largely
expected for both schemes, as it is well known that

5

Fig.2. BitFountain vs. BitTorrent download times with and without pre-
encoding and pre-decoding.

smaller piece sizes correspond to more efficient
download experiences in BitTorrent [11].

V. CONCLUSION

We here offered a set of experimental results
performed on a real digital fountain P2P streaming
test-bed. We believe this work provides a useful aid
in determining how P2P and coding strategies can
be put to good use for the implementation of next-
generation IPTV platforms.

REFERENCES
[1] C. E. Palazzi, N. Stievano, M. Roccetti and G. Marfia,

“Ensuring Fair Coexistence of Multimedia Applications in a
Wireless Home,” in Proc. 2nd IFIP/IEEE Wireless Days
Conference, IFIP/IEEE, Paris, December 2009, pp. 1-5.

[2] G. Marfia and M. Roccetti, “Dealing with Wireless Links in the
Era of Bandwidth Demanding Wireless Home Entertainment,”
in Proc. 6th IEEE International Workshop on Networking Issues
in Multimedia Entertainment, IEEE, Singapore, July 2010, pp.
1376-1381.

[3] C. E. Palazzi, A. Bujari, E. Cervi, “P2P File Sharing on Mobile
Phones: Design and Implementation of a Prototype,” in Proc. of
the 2nd IEEE International Conference on Computer Science
and Information Technology, IEEE, Beijing, 2009, pp. 136-140.

[4] P. Baccichet, T. Schierl, T. Wiegand and B. Girod, “Low-delay
peer-to-peer streaming using scalable video coding,” in Proc.
16th Packet Video Workshop, Lausanne, 2007, pp.173–181.

[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron
and A. Singh, “SplitStream: high-bandwidth multicast in
cooperative environments,” in Proc. 19th ACM Symposium on
Operating Systems Principles, Bolton Landing, 2003, pp. 298–
313.

[6] C. Gkantsidis, P.R. Rodriguez, “Network coding for large scale
content distribution,” in Proc. IEEE 24th Annual Joint

Fig. 3. BitFountain vs. BiTorrent download times as a function of the
piece size.

Conference of the IEEE Computer and Communications
Societies, Miami, 2005, pp. 2235–2245.

[7] W. Mea, L. Baochun, “R2: random push with random network
coding in live peer-to-peer streaming,” IEEE Journal on
Selected Areas in Communications, vol. 25, no. 9, pp. 1655–
1666, December 2007.

[8] D. Kostic, A. Rodriguez, J. Albrecht and A. Vahdat, “Bullet:
high bandwidth data dissemination using an overlay mesh,” in
Proc. 19th SIGOPS Oper. Syst. Rev., Bolton Landing, 2003,
pp. 282–297.

[9] W. Chuan, L. Baochun, “rStream: resilient and optimal peer-to-
peer streaming with rateless codes,” IEEE Trans. Parallel and
Distributed Systems, vol.19, no.1, pp.77–92, Jan. 2008.

[10] N. Thomos, P. Frossard, “Collaborative video streaming with
raptor network coding,” in Proc. 2010 International Conference
on Multimedia and Expo, Hannover, 2008, pp. 497–500.

[11] B. Cohen, “Incentives build robustness into bittorrent,” in Proc.
1st Economics of Peer-to-Peer Systems Workshop, Berkeley,
2003.

[12] A. Sentinelli, G. Marfia, S. Tewari, M. Gerla, L. Kleinrock,
“Will IPTV ride the peer-to-peer stream?,” IEEE
Communications Magazine, vol. 45, no. 6, pp. 86-92, June 2007.

[13] M. Mitzenmacher, “Digital fountains: a survey and look
forward,” Information Theory Workshop, 2004. IEEE , vol., no.,
pp. 271- 276, 24-29 Oct. 2004.

[14] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak and M. Bowman, “Planetlab: an overlay testbed for
broad-coverage services,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 3, pp. 3–12, Jul. 2003.

[15] A. Shokrollahi, “Raptor codes,” IEEE Trans. on Information
Theory, vol. 52, no. 6, pp. 2551-2567, June 2006.

[16] V. Ghini, G. Pau, M. Roccetti, P. Salomoni, M. Gerla, “Smart
download on the go: a wireless Internet application for music
distribution over heterogeneous networks,” in Proc. IEEE
International Conference on Communications, Paris, 2004, pp.
73- 79.

[17] M. Wang and B. Li, “Lava: A reality check of network coding in
peer- to-peer live streaming,” in Proc. 26th IEEE International
Conference on Computer Communications, Anchorage, 2007,
pp. 1082-1090.

[18] M. Wang and B. Li, "Network Coding in Live Peer-to-Peer
Streaming", IEEE Trans. On Multimedia, vol. 9, no. 8, pp. 1554-
1567, 2007.

