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Alla mia famiglia





“Would you tell me, please, which way I ought to go from
here?”

“That depends a good deal on where you want to get to,” said
the Cat.

“I don’t much care where —” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.
“— so long as I get somewhere,” Alice added as an explanation.
“Oh, you’re sure to do that,” said the Cat, “if you only walk

enough.”

Lewis Carroll
Alice in Wonderland
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Preface

“Do you really know what’s traveling across the Internet right now?”
Honestly, I knew that most of the Internet traffic was P2P. When I

decided to study P2P networks and the BitTorrent protocol, I thought that
my study will be useful to the most part of the Internet users. I did not
know, however, that P2P networks are so challenging: there are matters of
distributed computing, integrity, security, probability and so on.

So I started study the BitTorrent protocol: there are some specifications
available, but they are very poor and not so detailed. As a consequence, I had
to open up two (or more) BitTorrent clients, install a tracker on my system
and watch a small P2P network at my commands. I also knew BitTorrent is
the most used P2P program: you can download photos, documents, messages,
music, videos and software from all over the world by the time of a click. With
BitTorrent, anyone could be the multimedia entertainer: there is no need
of typing the URL of your favorite entertainer anymore. You can download
everything, legally or not; BitTorrent clients allow you to transfer a large
amount of data using all of your bandwidth. However, even with a fast
connection, the download process is always a start-and-wait task, especially
for big files: is there room for improving?

P2P works on the Internet, which is a reliable channel, but it may
experience some losses during a transmission. In fact, when queues and
buffers on remote nodes become almost full, the packets traveling on the
network are quickly discarded (congestion problem). This raises a problem
of completeness: a receiver can not complete a download due to the lack of
certain pieces of information. We are going to prevent this problem with the
addition of redundancy, using erasure recovery codes. In addition, there is
still the possibility that the information may be corrupted (intentionally or
not). We have a problem of integrity: a receiver must check for integrity
and correctness of every received piece of information. To detect integrity
we could use hash functions; to correct a received corrupted block, we will
use error correcting codes, that are a sort of code that can detect and correct
(within certain limitations) any errors which are introduced. Notice that if
the receiver can not correct a corrupted block may assume it as a lost block
(thus it can use erasure recovery).

We are going to investigate the application of a new type of erasure
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recovery codes; they are classified as LDPC and are called Digital Fountain
codes. This kind of codes guarantee that a receiver can reassemble the
information by accumulating enough encoded packets – encoded packets have
all the same criticality, thus there are not duplicate packets or most critical
packets. Such codes can be used for erasure recovery or to correct errors.
We are going to use them for erasure recovery, whereas in the future of this
project we will develop correct errors.

First of all, we need to know BitTorrent: the most used P2P application
of our days; we are going to investigate its terminology, its way of download
and upload files and its weaknesses from a security point of view. Because
of the lack of detailed documentation, we have to study the protocol in
details and make some experiments. Then, we analyze Digital Fountain
codes: the encoding and decoding process, complexity and, mostly, encoding
and decoding times, and finally, overhead (given the information total size,
the overhead is the additional information that a receiver must collect in
order to successfully reassemble the information). Subsequently, we design
a new BitTorrent client that uses Digital Fountain codes: BitFountain. We
are going to describe its functionality, its way of encode, transmit, receive,
decode and validate information sent over the Internet. Integrating Digital
Fountain codes won’t be so easy: there are some security issues to take in
account. We are going to analyze them and propose some solutions to solve
those problems. At the end, a survey about future developments will depict
the future of this project. This thesis is the most comprehensive and detailed
project about BitTorrent and Digital Fountain available today. In addition,
we describe how we integrate them and how we solve those security problems
we mentioned before.



Chapter 1

P2P and BitTorrent

1.1 Peer to Peer (P2P) networks

The term Peer to Peer (P2P) can be defined as a network in which a signifi-
cant proportion of the network’s functionality is implemented by peers in a
decentralized way, rather than being implemented by centralized servers1. A
peer is a single program that is run on a number of hosts which interconnect
to form a P2P network.

P2P networks uses varied connectivity between participants and the
cumulative bandwidth of network participants; such networks are typically
used for connecting nodes via largely ad hoc connections. A pure P2P network
does not have the notion of clients or servers but only equal peer nodes that
simultaneously function as both clients and servers to the other nodes on the
network. This model of network arrangement differs from the client-server
model where communication is usually to and from a central server. See
figure 1.1 on the following page for comparison.

An important goal in P2P networks is that all clients provide resources,
including bandwidth, storage space, and computing power. Thus, as nodes
arrive and load of the system increases, the total capacity of the system also
increases. This is not true of a client-server architecture with a fixed set of
servers, in which adding more clients could mean slower data transfer for all
users2. The distributed nature of P2P networks also increases robustness in
case of failures by replicating data over multiple peers, and – in pure P2P
systems – by enabling peers to find the data without relying on a centralized
index server. In the latter case, there is no single point of failure in the
system.

1This means that the implementation of functionalities is spread across all or most of
the peers in the network.

2The underneath network is the same in P2P or server-client case. For many reason
that we are going to illustrate, P2P exploits and takes bandwidth utilization to the limit.
As a consequence, most ISPs throttle the traffic generated by P2P programs [46].
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(a) A peer-to-peer based network. (b) A server-client network.

Figure 1.1: A comparison between P2P networks and server-client networks.

1.1.1 Classification

P2P networks can be classified by what they can be used for:

• content delivery.

• file sharing (files containing audio, video, data or anything in digital
format).

• transferring real-time data (telephony).

• media streaming (audio and video).

• discussion forums.

Other classification of P2P networks is according to their degree of central-
ization. In pure P2P networks:

• peers act as equals, merging the roles of clients and server.

• there is no central server managing the network.

• there is no central router3.

Some examples of pure P2P application layer networks designed for file
sharing are Gnutella and Freenet. There also exist countless hybrid P2P
systems, characterized by:

• a central server that keeps information on peers and responds to requests
for that information.

3A decentralized routing algorithm is feasible only under definite hypothesis [9].
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• peers are responsible for hosting available resources (as the central
server does not have them), for letting the central server know what
resources they want to share, and for making its shareable resources
available to peers that request it.

• route terminals are used as addresses, which are referenced by a set of
indices to obtain an absolute address.

1.1.2 P2P for file sharing

As we just said, P2P can be used for several purposes: file sharing is the
most widely used P2P application. P2P file sharing systems consist of
programs that are used to create and maintain P2P networks to facilitate
the transmission of files between users. They allow users to download files
from other users of the P2P network, and often also allow users to designate
a set of files from their PC’s file system to be shared. Sharing a file makes
the file available to other users of the P2P network. There are two key parts
of a P2P file sharing system:

• file distribution system. The file distribution system provides the means
to transmit files between peers. It is the protocol used to dictate how
peers in the system should behave in order to download and upload
files.

• file finding system. The file finding system is the means for users to
find the files that are available on the P2P network. P2P file sharing
systems typically provide the file finding system by maintaining some
form of index of the files.

P2P file sharing systems differ in how and where they implement these two
parts. Some maintain the file index in a centralized way, and others in a
decentralized way. P2P file sharing systems implement the file distribution
system in a decentralized way. This definition of P2P file sharing systems
satisfies the definition of P2P given earlier – the most significant part of
network’s functionality, the transfer of files, is done directly between the
peers in the network, without the use of centralized servers.

File sharing and the law

The debate on peer to peer and file sharing is a virtually global phenomenon.
Peer to peer technology allows people worldwide to share files and data;
however a significant proportion of the data shared is material passed freely
between users that is (or should legally be) subject to copyright or other
restrictions. Different legal systems, and different technologies, handle this
differently. Some of the key background and distinctions are as follows:
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(a) Internet traffic trends from CacheL-
ogic research (2006). We can see the
increase of P2P traffic in the recent
years.

(b) Ipoque, a German ISP, released a re-
port [43] on P2P traffic usage in 2007.
According to this report, P2P is the
most used application in the Internet.

(c) Sandvine, a Canadian ISP, released
a report [44] on P2P traffic usage in
2008. Regarding downstream band-
width, P2P is the second most used
application.

(d) Sandvine, a Canadian ISP, released a
report [44] on P2P traffic usage in 2008.
Regarding upstream bandwidth, P2P
is the most used application.

Figure 1.2: A comparison of reports on Internet traffic: P2P takes up most
of the Internet bandwidth. According to Sandvine’s study, P2P
technology is going to see explosive growth in the magnitude of
400% in the next five years, equating to 8 petabytes of traffic
per month.
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• P2P file sharing is used both legitimately (to distribute with permission
or non-copyright materials), and illegitimately (in breach of copyright).
It is highly popular and effective, with some estimates being that
18–35% of all internet traffic is P2P usage in some form or other.

• P2P systems vary - some rely upon a centralized server, others are
decentralized without the need of a site operating the system. Recent
systems often have anonymity or obfuscation built in, making it harder
to identify senders, recipients and material, and providing a degree of
plausible deniability.

• in some file sharing systems, the owner of a sharing system directly
distributes files themselves (i.e. Rapidshare4). In others, notably
BitTorrent, the organizer is not in fact distributing any copyright
material. Rather, they act like a cataloger or co-ordinator, indexing
files rather than themselves offering any such material. A typical such
file might provide a filename, a location it can be downloaded from, and
various checksums which can be used to verify the file’s integrity when
downloaded. It does not, itself, contain any media material, whether
legal or otherwise.

1.1.3 Application of P2P network

• Bioinformatics: P2P networks have begun to attract attention from sci-
entists in other disciplines, especially those that deal with large datasets
such as bioinformatics. P2P networks can be used to run large programs
designed to carry out tests to identify drug candidates. The first such
program was begun in 2001 the Centre for Computational Drug Discov-
ery at Oxford University in cooperation with the National Foundation
for Cancer Research. There are now several similar programs running
under the auspices of the United Devices Cancer Research Project.

• Search engines:

– The sciencenet karl [40] provides a free and open search engine
for scientific knowledge. Universities and research institutes can
download the free Java software and contribute with their own
peers to the global network.

– YaCy is a peer-to-peer search engine and web crawler. Users install
the software and become a YaCy-peer, volunteering their computer
to independently crawl through the web, analyzing and indexing
websites into a database shared by all Yacy peers. More than 400
million websites have been indexed by YaCy. There is no central

4http://www.rapidshare.com.

http://www.rapidshare.com
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server; the database is shared and upheld by the YaCy peers.
There are a few distinct advantages of a decentralized peer-to-peer
search engine: since there is no central server or company who
owns the service, the search results cannot be censored, and no
incentives to prioritize results based on prospective contracts or
advertising dollars.

• Education and Academia: due to the fast distribution and large storage
space features, many organizations are trying to apply P2P networks for
educational and academic purposes. Stanford University use BitTorrent
to give away some of their engineering courses; the university not only
gives away videos of lectures, but also syllabi, handouts, homework and
exams. In addition to offering torrents, the courses are also available
on YouTube, via iTunes and Vyew. With the project Stanford aims
to spread knowledge on technology worldwide. Thus far, the online
courses have been a great success. Over 200,000 people from all over
the world have visited the site already.

• Privacy: Tor is an application that shields its user’s identities by
sending their traffic through a network of relays set up by volunteers
around the world. In other words it prevents somebody watching your
Internet connection from learning what sites you visit, and it prevents
the sites you visit from learning your physical location. Tor is used
by everyday ordinary Internet users who wish to avoid advertiser’s
behavioral targeting, citizen journalists in countries without safe access
to media, law enforcement setting up anonymous tip lines, activists,
and whistleblowers. To accomplish this, the Tor network relies on
people to volunteer their Internet connection as a relay. These relays
send user’s content privately to other volunteer relays with the aim of
obfuscating the user’s location or identity. Those who volunteer their
Internet connection as a relay are committing to allowing a certain level
of bandwidth usage flow through their pipe (20KB/sec minimum).

• Business:

– P2P networks have already been used in business areas, but it is
still in the beginning stages. Currently, over 200 companies with
approximately $400 million USD are investing in P2P network.
Besides file sharing, companies are also interested in:

∗ distributed computing.
∗ content distribution.
∗ e-marketplace.
∗ distributed search engines.
∗ groupware and office automation via P2P networks.
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At the same time, P2P is not fully used as it still faces a lot of
security issues.

– Colonos Workplace is a cross-platform P2P system for collaborative
teams to work on projects and transmit their work amongst their
work group. This P2P based product fills the gap for small and
medium size businesses who don’t have the IT budget for the elab-
orate collaborative software found in larger businesses. Currently
out in Beta phase, is its open source integrated VOIP technology,
so team members can talk in real time, conduct conference calls
and to communicate through its integrated multiplatform, multi-
protocol instant messaging features while collaborating on work
projects.

• TV: delivery TV content over a P2P network (P2PTV). The European
Union has committed e14 million ($22 million) for a four-year project
to create an open source, peer-to-peer BitTorrent client called P2P-Next.
This client will hopefully become a new standard way for broadcasters
to use the Internet as a low-cost distribution platform. Users will have
the option of either downloading material or viewing live video streams.
The peer-to-peer system will be able to pipe TV programs to set-top
boxes and home TV sets. Indeed, the core technical goals of the project
are to foster an open standards-based next-generation Internet TV dis-
tribution system, employing P2P and social interaction. The European
Union’s P2P Next project to develop an internet television distribution
standard will build on Tribler technology under development at the
Delft University of Technology5.

• Telecommunication: nowadays, people are not just satisfied with “can
hear a person from another side of the earth”, instead, the demands
of clearer voice in real-time are increasing globally. Just like the TV
network, there are already cables in place, and it’s not very likely for
companies to change all the cables. Many of them turn to use the
Internet, more specifically P2P networks. Furthermore, many research
organizations are trying to apply P2P networks to cellular networks.

In general, Internet telephony can be implemented without use of a P2P
network, but using P2P networks can have advantages. One popular
P2P Internet telephony and instant messaging program is Skype. Skype
allows users to make voice calls and send instant messages to each other.
In a non-P2P system, all of the voice and message packets are routed
through a central server. In Skype, the packets are sent directly from
one peer to another, or routed through other peers in the Skype network

5Tribler is an open source Peer-to-Peer client with various features for watching videos
online. It supports standard features such as key word searching for content and segmented
downloading.
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Figure 1.3: Tribler, a popular BitTorrent client.

when a direct connection between the two peers is not possible. As a
consequence, the network can cheaply scale to millions of users because
there is no need for costly centralized infrastructure. Currently, there
are around two million users simultaneously using Skype at any given
time.

1.2 A technical overview of BitTorrent

BitTorrent is a peer-to-peer file sharing protocol used to distribute large
amounts of data. The protocol was designed [4] by Bram Cohen in April
2001 and the first implementation was released on 2 July 2001. Usage of the
protocol accounts for significant Internet traffic, as we can see in figure 1.9
on page 27; though the precise amount has proven difficult to measure.
Nowadays, there are numerous BitTorrent clients available for a variety of
computing platforms. Each client is capable of preparing, requesting, and
transmitting any type of computer file over a network using the protocol. A
screenshot of Tribler, a popular BitTorrent client, is shown in figure 1.3.

Since there is an official specification which is not very detailed, we have
done some experiments with a BitTorrent client (Vuze) and a packet sniffer
(Wireshark) to reverse-engineer the protocol, using the (few) details published
on the Internet. In the following pages, we describe our results in studying
BitTorrent protocol.
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1.2.1 Terminology

We will briefly define several terms commonly used in the BitTorrent system.

Torrent file A metadata file containing information of the file you want to
download.

Piece A part of a file that has a size of a power of 2. A torrent is split up
into pieces that are of the same size except for the last piece which may
be less than the piece size. Piece sizes are listed in table 1.1 on the
next page.

Sub-Piece/Block A part of a piece that is transferred over the wire at a
time. The specification allows 215 (32KB) requests. The reality is near
all clients will now use 214 (16KB) requests. Due to clients that enforce
that size, it is recommended that implementations make requests of
that size. Smaller requests will result in higher overhead due to tracking
a greater number of requests.

Peer A peer is any computer running an instance of a client. An entity in
the BitTorrent system that uploads/downloads file pieces.

Seed A peer that has a complete copy of the file and is uploading to the
network.

Leecher A peer that does not have a full copy of the file and is downloading
from the network.

Tracker A central entity that peers communicate with periodically to help
them discover one another.

Swarm A group of peers connected to each other to share a torrent.

Bencode An encoding format used to encode torrent information in the
.torrent file and tracker responses to peers. Bencoded messages contain
nested dictionaries and lists, which contain string and integers.

1.2.2 Components of a BitTorrent system

A BitTorrent system consists of:

• a .torrent file containing information of the original file.

• a BitTorrent tracker that sends out and receives peer information and
maintains peer statistics.

• one or more BitTorrent clients, of which one of them is the original
seed that has the original copy of the file in mention.

• a web server hosting the .torrent file for users to download.

Figure 1.4 on page 11 represent a basic BitTorrent system.
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Table 1.1: Piece size, block size and corresponding number of requests.

Piece size (KB) Block size (fixed) (KB) Number of requests

32 16 2
64 16 4
128 16 8
256 16 16
512 16 32

1024 16 64
2048 16 128
4096 16 256

1.2.3 Strengths

BitTorrent introduces a more distributed concept of file sharing. While
downloading a file from other peers, a BitTorrent client uploads partially
downloaded parts of the file. Note that, assuming zero peer failures, the
initial seed peer only needs to transmit each piece of the file once into the
swarm, and it is possible for every peer to receive a complete copy of the file,
even in a swarm of thousands of peers. To contrast this with conventional
web serving, a situation with thousands of requesting clients requires that
the complete file is transmitted to every client. This insight demonstrates
BitTorrent’s scalable nature.

Though both ultimately transfer files over a network, a BitTorrent down-
load differs from a classic full-file HTTP request in several fundamental
ways:

• BitTorrent makes many small data requests over different TCP sockets,
while web-browsers typically make a single HTTP GET request over a
single TCP socket.

• BitTorrent downloads in a random or in a rarest first approach that
ensures high availability, while HTTP downloads in a sequential manner.

Taken together, these differences allow BitTorrent to achieve:

• much lower cost (in fact, the upload cost is distributed and shared
among its peers instead of being placed on a single host).

• much higher redundancy (pieces are replicated among peers rather than
on a single server).

• much greater resistance to abuse or to flash crowds than a regular
HTTP server.
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Figure 1.4: Components of a BitTorrent system.

One of the most interesting aspects of BitTorrent protocol is also the tit-for-
tat mechanism, which specifies that every peer will have a download rate
proportional to its upload rate. We will focus on tit-for-tat on paragraph 1.2.7
on page 23.

1.2.4 Weaknesses

Downloads can take time to rise to full speed because it may take time for
enough peer connections to be established, and it takes time for a node to
receive sufficient data to become an effective uploader. As such, a typical
BitTorrent download will gradually rise to very high speeds, and then slowly
fall back down toward the end of the download. This contrasts with an HTTP
server that, while more vulnerable to overload and abuse, rises to full speed
very quickly and maintains this speed throughout.
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It is obvious that the fault tolerance of BitTorrent is much higher than
HTTP. Even if a node fails, a downloader has other sources to download from.
However, if the tracker fails, new downloaders cannot start downloading since
they will not be able to look for peers to connect to6. Downloaders who
have established connections with other peers before the tracker failed can
continue to share the file as long as their peers have file pieces that they have
yet to obtain and vice versa. However, they cannot look for new peers and a
complete download of the file is not guaranteed.

The BitTorrent protocol did not specify any incentives to keep seeders from
leaving the swarm. BitTorrent file sharers, compared to users of client/server
technology, often have little incentive to become seeders after they finish
downloading. With seeders leaving, the remaining downloaders will not be
able to obtain a complete file; in fact, a torrent is alive as long as there is
at least one seed in the torrent. Some BitTorrent websites have attempted
to address this by recording each user’s download and upload ratio (share
ratio), as well as the provision of access to newer torrent files to people with
better ratios. Users who have low upload ratios may see slower download
speeds until they upload more. This prevents (statistical) leeching, since after
a while they become unable to download much faster than 1-10 kB/s on a
high-speed connection. Some trackers exempt dial-up users from this policy,
because they cannot upload faster than 1-3 kB/s.

It is considered good etiquette to keep share ratio equal or double one’s
leeching. This provides an opportunity to reciprocate what a peer has
downloaded, supporting the torrent and nature of the protocol. While this
is usually most easily accomplished with a DSL connection, those using
an ADSL (Asymmetric Digital Subscriber Line) or dial-up will not be able
to conform easily to this rule of etiquette (as they have more downstream
bandwidth than upstream). To combat this leeching problem, some seeders
deliberately withhold one final piece from the seed, thus leaving a large
number of potential seeders once they receive the withheld piece of data.
With clients each awaiting that one final piece, the seeder ensures that there
will be many more seeds once the final piece is released.

There are cheating clients like BitTyrant [27] and BitThief [18] which
claim to be able to download without uploading. Such exploitation negatively
affects the cooperative nature of the BitTorrent protocol.

1.2.5 Torrent files

Torrent files are metadata files created prior to sharing a file or files, which we
will call an entity. These .torrent files contain information that a Bittorrent
client requires to download an entity, but not the entity itself. The metadata
is bencoded with the following information:

6In this case we are considering a single-tracker system.
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announce URL of the tracker.

info A dictionary containing the following keys:

name A suggested name to save the entity. If the entity is a single file,
this key represents a file name. If it consists of multiple files, then
this key maps to a directory name.

piece length The size of each piece of the entity.

pieces A string containing the concatenation of all SHA1 hashes of
each piece of the entity.

length The length of the file in bytes. If this key is present, it means
that the entity is a single file. In this case, the key, files, will
not be present. If the entity to be downloaded is a directory of
multiple files, files will be present instead of length.

files A files list consisting of a list of dictionaries with the following
keys.

length The length of the file in bytes.
path A list containing one or more string elements that to-

gether represent the path and filename. Each element in
the list corresponds to either a directory name or (in the
case of the final element) the filename. For example, the file
dir1/dir2/file.ext would consist of three string elements:
dir1, dir2, and file.ext.

1.2.6 Tracker

The tracker is the only centralized component of BitTorrent, but it is not
involved in the actual distribution of file. It only keeps track of the peers
that currently take part in the torrent and it collects statistics on the torrent
itself; tracker server knows only if a peer is downloading or if it just seeding.
A tracker can coordinate peers for more than one torrent. It organizes sets of
peers according to the info hash of the entity they are downloading7.

The tracker is an HTTP/HTTPS service which responds to HTTP GET
requests. The requests include metrics from clients that help the tracker keep
overall statistics about the torrent. The response includes a peer list that
helps the client participate in the torrent.

Indexing

The BitTorrent protocol provides no way to index torrent files. As a result,
a comparatively small number of websites have hosted the large majority

7The info_hash are the 20 byte SHA1 hash of the bencoded form of the info value
from the metainfo file.
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of torrents linking to (possibly) copyrighted material, rendering those sites
especially vulnerable to lawsuits. Several types of websites support the
discovery and distribution of data on the BitTorrent network.

Public tracker sites such as The Pirate Bay allow users to search in and
download from their collection of .torrent files; they also run BitTorrent
trackers for those files8. Users can typically also upload .torrent files for
content they wish to distribute. Private tracker sites such as Demonoid
operate like public ones except that they restrict access to registered users
and keep track of the amount of data each user uploads and downloads, in
an attempt to reduce leeching.

1.2.7 Clients

To share a file or group of files, a peer first creates a small file called torrent.
Peers that want to download the file must first obtain a torrent file for it,
and connect to the specified tracker, which tells them from which other peers
to download the pieces of the file. The peer distributing a data file treats the
file as a number of identically-sized pieces (except for the last one). The peer
creates a checksum for each piece, using the SHA1 hashing algorithm, and
records it in the torrent file. Pieces with sizes greater than 512 kB will reduce
the size of a torrent file for a very large payload, but is claimed to reduce the
efficiency of the protocol. When another peer later receives a particular piece,
the checksum of the piece is compared to the recorded checksum to test that
the piece is error-free9. Torrent files are typically published on websites or
elsewhere, and registered with a tracker. The tracker maintains lists of the
clients currently participating in the torrent. Alternatively, in a tracker less
system (decentralized) every peer acts as a tracker.

Users browse the web to find a torrent of interest, download it, and open
it with a BitTorrent client. The client connects to the tracker(s) specified in
the torrent file, from which it receives a list of peers currently transferring
pieces of the file(s) specified in the torrent. The client connects to those peers
to obtain the various pieces. If the swarm contains only the initial seeder, the
client connects directly to it and begins to request pieces. As peers enter the
swarm, they begin to trade pieces with one another, instead of downloading
directly from the seeder.

8In the years to come, The Pirate Bay established itself as the largest BitTorrent tracker
on the Internet. Over the past 12 months, the number of peers connected to tracker has
tripled to 25 million.

9Clearly, there’s a trade off between the number of hashes to calculate and publish and
the discarded bytes due to a piece which does not pass the hash check. In fact, if a piece
does not pass hash check, it is discarded and the client re-downloads it.



A technical overview of BitTorrent 15

Downloading in details

The following describes the steps involved for a client to download a file using
BitTorrent.

1. a downloader, client0, starts off by downloading a .torrent file corre-
sponding to the file it wants to obtain. In figure 1.4 on page 11, this
step is represented by 1 and 2. Upon receiving the .torrent file, the
BitTorrent client starts. The downloader then selects the path to save
his file.

2. upon initialization, a file of that save path is created with length 0.
The peer first connects to the tracker to request a set of IP addresses of
remote peers that are in the swarm. The tracker returns a random list
of IPs belonging to peers that are leeching or seeding the torrent. The
returned list is a fixed-length subset of the full list the tracker maintains.
The request for a set of remote peer IP addresses allows the tracker to
add the requesting peer to its list of peer IP address. If the number of
peers of a node ever dips below 20, say due to the departure of peers,
the node contacts the tracker again to obtain a list of additional peers
it could connect to. In figure 1.4 on page 11, 3 and 4 illustrate this step.
The tracker protocol uses HTTP. Peers make HTTP GET requests and
the tracker sends responses in the returning HTTP response data.

3. after the peer has a partial list of peers in the swarm, it picks a certain
amount of them at random (peers in client0’s ban list are excluded),
and attempts to connect to them10. The success of the connections are
determined by several factors:

• client0 must not already be connected to that peer.

• that peer must not be a pending connection of client0.

• client0 and the remote peer have not reached the maximum
number of TCP connections allowed by the operating system.

The number of outgoing connection request ranges from four to around
thirty, depending on user configurable settings and peer implementation.
The peer also listens on a network port, by default 6881 TCP but also
user configurable, to allow remote peers that are also attempting to
connect to other remote peers to connect to the peer. The peer should
start to receive connections after it gives the tracker its IP address,
because remote peers will receive this IP address from the tracker and
start to connect to the peer, assuming there are other peers in the
swarm. Each peer in the swarm aims to maintain the certain number

10See chapter 4 for further details on ban lists.
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of connections to remote peers, without consideration of which peer
initiated the connection.

The peer wire protocol operates over TCP, and uses in-band signaling
for peer communication. Signaling and data transfer are done in the
form of a continuous bi-directional stream of fixed-size, length-prefixed
protocol messages. A P2P session is equivalent with a TCP session,
and there are no protocol entities for tearing down a BitTorrent session
beyond the TCP teardown itself.

4. a handshake is done for each successful socket connection. This is
represented by 5 in figure 1.4 on page 11. The handshake is done in
both directions. If the receiving peer replies with the corresponding
information, the BitTorrent session is considered to be opened and the
peers start exchanging messages across the TCP streams. In other cases,
the TCP connection is closed. The message sent during a handshake
has the following format:

<protocol_length><protocol><flags><info_hash><peer_id>

• protocol_length: length of the protocol name, which is “BitTor-
rent protocol”. As a consequence, protocol_length is 19.
• protocol: protocol used in the system, which is “BitTorrent pro-

tocol”.
• flags: 8 flag bytes. Currently the first 7 bytes are not in use
(they are reserved for future features) and are set to 0. The last
of the 8 bytes is set to 1 if this client supports distributed hash
tables (DHT), otherwise it is set to 011.
• info_hash: SHA1 hash of the info value of the .torrent metadata

file. This value must match that of the receiving client’s. This is
the same info_hash that is transmitted in tracker requests.
• peer_id: 20-byte string used as a unique ID for the client. The

recipient will check its own ID to see if the ID sent by the initiating
client matches the one it expects. If they do not match, both sides
will drop the connection immediately. This is usually the same
peer_id that is transmitted in tracker requests.

The initiator of a connection is expected to transmit its handshake
immediately. Immediately following the handshake procedure, each
peer sends information about the pieces of the resource it possesses.
This is done only once, and only by using the first message after the
handshake. The information is sent in a BITFIELD message, consisting
of a stream of bits, with each bit index corresponding to a piece index.
Each bit raised corresponds to a piece that the client has.

11See section 1.2.11 on page 32 for further details on DHT.
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5. the connection is established and peers communicate via an exchange
of length-prefixed messages (described afterwards). This is represented
by 6 in figure 1.4 on page 11.

A peer maintains two states for each peer relationship, namely interested
and choked.

Choked state is whether or not the remote peer has choked this
client. When a peer chokes the client, it is a notification that
no requests will be answered until the client is unchoked. The
client should not attempt to send requests for blocks, and it should
consider all pending (unanswered) requests to be discarded by the
remote peer. For a peer to be allowed to download, it must have
received an unchoke message from the sending peer. Once a peer
receives a choke message, it will no longer be allowed to download.
This allows the sending peer to keep track of the peers that start
downloading when unchoked.

Interested state is whether or not the remote peer is interested in
something this client has to offer. This is a notification that the
remote peer will begin requesting blocks when the client unchokes
them. Interest should be expressed explicitly, as should lack of
interest. That means that a peer wishing to download notifies the
sending peer (where the sought data is) by sending an interested
message, and as soon as the peer no longer needs any other data,
a not interested message is issued. A peer with all data, i.e., a
seed, is never interested.

Connections start out choked and not interested. It is important for
the client to keep its peers informed as to whether or not it is interested
in them. This state information should be kept up-to-date with each
peer even when the client is choked. This will allow peers to know
if the client will begin downloading when it is unchoked (and vice-
versa). These states are updated using CHOKE, UNCHOKE, INTERESTED
ad UNINTERESTED messages. Figure 1.5 on the next page summarizes
the state transition of a connection with respect to client0.

An unchoked and interested peer will send a REQUEST message to request
(part of) a piece. A request by an unchoked peer is always granted and
the relevant data sent back using a PIECE message. Once a piece has
been fully received and its hash is confirmed, the peer will broadcast a
HAVE message to its neighbours. If a neighbour becomes interested after
having received the HAVE message, it will send an INTERESTED message,
wait for an UNCHOKEmessage, send a REQUESTmessage and finally receive
the PIECE message containing the file data. In the described scenario,
it thus takes at least 2.5 round-trips for a piece to hop from one peer
to the next. If the neighbour was already interested and unchoked
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Figure 1.5: State-transition diagram of a BitTorrent connection with respect
to client0. Messages sent from the other side of the connection,
i.e. peer1, are represented in the angle brackets, <>. The labels
“interested” and “not interested” represent whether client0 is
interested in what peer1 has to offer.

when it receives the HAVE message, the delay is reduced to at least 1.5
round-trips.

Peer wire protocol The peer protocol facilitates the exchange of
messages between peers. Messages are in the following format:

<message_length><message_type><message>

• message_length: it is a four byte big-endian value.
• message_type: 1 byte value representing the type of message sent.
• message: Depending on message_type, each message has its own
format. Thus, message_length will have differing values as well.
The following gives the relationship between the message_type
and message (as well as message_length). Note that KEEP-ALIVE,
CHOKE, UNCHOKE, INTERESTED and NOT_INTERESTED do not have
this field.
– KEEP-ALIVE: <0000>

The keep-alive message is a message with zero bytes, specified
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with the length prefix set to zero. There is no message ID
and no payload. Peers may close a connection if they receive
no messages (keep-alive or any other message) for a certain
period of time, so a keep-alive message must be sent by both
parties to maintain the connection alive if no command have
been sent for a given amount of time. This amount of time is
generally two minutes.

– CHOKE: <0001><0>
No data will be uploaded until unchoking occurs.

– UNCHOKE: <0001><1>
Tell peer that its requests will be answered.

– INTERESTED: <0001><2>
Tell peer that we have something to download from it.

– NOT_INTERESTED: <0001><3>
Tell peer that we do not want to download from it.

– HAVE: <0005><4><index>
As soon as a peer receives a full piece, it can transmit the piece
to the remote peers it is connected to. This allows the pieces
to be propagated through the swarm. With HAVE message,
the peer announces that it have successfully downloaded a
piece, characterized by its piece index.

– BITFIELD: <0001 + bitfield length><5><bitfield>
The bitfield message must be sent by both parties immediately
after the handshaking sequence is completed and before any
other messages are sent. It has not to be sent if a client has
no pieces. The payload is a bitfield representing the pieces
that have been successfully downloaded. The high bit in the
first byte corresponds to piece index 0. Bits that are cleared
indicated a missing piece, and set bits indicate a valid and
available piece. Spare bits at the end are set to zero. A bitfield
of the wrong length is considered an error. Clients should
drop the connection if they receive bitfields that are not of
the correct size, or if the bitfield has any of the spare bits set.

– REQUEST: <000d><6><[index][begin][length]>
Request for a block, which is a portion of a piece of that
particular index, at offset begin and of that length12. index,
begin and length are 4 bytes each. To allow TCP to increase
the throughput, several requests are usually sent back-to-back.
Each request should result in the corresponding block to be
transmitted. If the block is not received within a certain time
(typically one minute), the non-transmitting peer is snubbed,

12From now on, length is assumed to be equal to 16384 (as most of BitTorrent clients
do) for all the blocks (except for the last one).
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i.e. it is punished by not being allowed to download, even if
unchoked. See figure 1.7 on page 22.

– PIECE: <0009+block len><7><[index][begin][block]>
Send a portion of a piece of that index at offset begin. This
corresponds to a REQUEST message sent by the recipient earlier.
index and begin are 4 bytes each.

– CANCEL: <000d><8><[index][begin][length]>
Cancel an earlier request of a piece of that particular index,
at offset begin and of that length. index, begin and length
are 4 bytes each.

Downloading strategies

Clients incorporate mechanisms to optimize their download and upload
rates; for example they download pieces in a random order to increase the
opportunity to exchange data, which is only possible if two peers have different
pieces of the file. Therefore, piece selection is very crucial in the BitTorrent
system, because wrong choices can result in not being able to download a
complete file or not being able to upload to other peers. The effectiveness
of this data exchange depends largely on the policies that clients use to
determine to whom to send data.

Random first If the local peer has downloaded strictly less than 4 pieces,
it has nothing to upload to other peers, and thus may take a longer time if it
uses the rarest piece first policy. The client chooses the next piece to request
at random. This is called the random first policy. Once it has downloaded at
least 4 pieces, it chooses the next piece to download at random in the rarest
pieces set. The aim of the random first policy is to permit a peer to download
its first pieces faster than with a the rarest first policy, as it is important
to have some pieces to reciprocate for the choke algorithm. Indeed, a piece
chosen at random is likely to be more replicated than the rarest pieces, thus
its download time will be in mean faster.

Strict priority Once a block has been requested, block of the same piece
index will have a greater priority than any other blocks. The aim of the
strict priority policy is to complete the download of a piece as fast as possible.
As new clients can only start uploading when at least one complete piece is
obtained, it is important to minimize the number of partially received pieces.

Rarest first BitTorrent applies an algorithm to encourage the spread of
the rare resources called rarest first algorithm. The local peer maintains the
number of copies in its peer set of each content piece by searching for the less
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Figure 1.6: Node communications in BitTorrent.
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Figure 1.7: BitTorrent protocol exchange.
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replicated pieces: they will be the pieces that gain the highest priority13. The
rarest pieces set is updated each time a copy of a piece is added to or removed
from the peer set of the local peer. Note that any rarest first strategy should
include randomization among at least several of the least common pieces,
as having many clients all attempting to jump on the same least common
piece would be counter productive. This ensures that clients will get the less
common pieces faster to be able to upload to their peers. In this way there is
a higher probability of peers getting complete files.

Endgame mode When the downloader is a few blocks away from obtaining
the full copy of the file, there’s a tendency for the last few blocks to trickle in
slowly. Thus, the client switches in end-game mode. There is no documented
thresholds, recommended percentages, or block counts that could be used as
a guide. Some clients enter end game when all pieces have been requested.
Others wait until the number of blocks left is lower than the number of blocks
in transit, and no more than 20. There seems to be agreement that it’s a good
idea to keep the number of pending blocks low (1 or 2 blocks) to minimize the
overhead, and if you randomize the blocks requested, there’s a lower chance
of downloading duplicates. During this mode, the peer requests all blocks
not yet received to all peers in its peer set. Each time a block is received,
the client will send CANCEL messages to all of its peers so as not to receive
duplicate data and waste bandwidth. As a peer has a small buffer of pending
requests, all blocks are effectively requested close to the end of the download.
Therefore, the end game mode is used at the very end of the download, thus
it has little impact on the overall performance. The goal for this design is to
enable the downloader to finish downloading the last few blocks faster.

Choking algorithm

Free riders (cheating peers who download but do not upload) are a threat
to the P2P system: having lots of these behaviors, the risk is to destroy the
whole network. Thus the problem must not be underestimated: BitTorrent
uses a tit-for-tat scheme to discourage free riders.

Tit-for-tat mechanism Besides being able to select the appropriate pieces
to download at the appropriate times, a client must also find ways to get the
most out of his own downstream bandwidth. The main concept is tit-for-tat,
which encourages fair trading: between two persons, A and B, if A helps
B, B will help A in the future, but no advantage comes if one of them does
not cooperate. In BitTorrent, for each peer contacted, the client measures
the amount of bytes uploaded and downloaded. The scheme dictates that

13The client can determine the less replicated pieces by keeping the initial bitfield from
each peer, and updating it with every have message. Then, the client can download the
pieces that appear least frequently in these peer bitfields.
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each peer only uploads to a subset of remote peers that it is connected to
– the remote peers that it is getting the highest current piece transfer rate
from, out of all of the remote peers the peer is connected to. With most
peers in the swarm following this rule, it is in each peer’s best interest to
upload to a remote peer that the peer is receiving pieces from. If the peer
does not, the peer is likely to stop receiving pieces from the remote peer,
because the remote peer is not getting a high enough download rate from
the peer. In this way, clients decide for themselves how to maximize their
download speeds by selecting peers that have the highest upload rates to
them. As a result, to get a good download speed, a client must be able to
upload as much as well. Tit-for-tat is achieved using the choking algorithm,
described in the following paragraph. When a peer joins the swarm it has
not any pieces to reciprocate to other peers: for this reason, the BitTorrent
protocol introduces a optimistic unchoking strategy to allow newly-joined
peers to begin the exchange of data. We will describe optimistic unchoke in
the following paragraph.

Tit-for-tat strategy does not consider when there is exceeded capacity
of service in the torrent. This situation is a fundamental property of P2P
applications, not rare indeed. When a peer has an asymmetrical network
connectivity, the upload capacity is lower than the download capacity. In this
situation, tit-for-tat forbids who is downloading a file to use its full download
capacity; even in case of spare capacity in the P2P session. This is a hard
task to accomplish anyway. This is the main reason why tit-for-tat strategy
is not reckoned as the best to punish free-riders; other strategies tend to
have a more cooperative approach. This kind of problems goes under the
name of game theory [38]. Concerning this subject Robert Aumann and
Thomas Schelling (Nobel prizes in 2005) have focused on the importance of
cooperation [41]. They sustain that in defined circumstances cooperation
brings the two contestants to a better pay-off than any other strategy [11].
A promising improvement of tit-for-tat is give-to-get, implemented in Tribler
client. Basically this algorithm broaden the reputation scheme: if a peer helps
another peer, the helper peer gains reputation on all the peers of the swarm
(in a tit-for-tat scheme, the helper peer gains reputation only on the helped
peer). In addition, the helper gains reputation over time: in the future, it is
probable that other peers may help it. This will allow give-to-get to achieve
a better and more flexible way to encourage sharing among peers.

Choking and unchoking The choke algorithm was introduced to imple-
ment tit-for-tat mechanism, guarantying a reasonable level of upload and
download reciprocation. As a consequence, free riders should be penalized.
The choke algorithm makes an important distinction between the leecher
state and the seed state. In this section, interested always means interested
in the local peer, and choked always means choked by the remote peer.
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Figure 1.8: BitTorrent during download. In this case we are considering a
trackerless system.

Choking is done for several reasons:

• TCP congestion control behaves very poorly when sending over many
connections at once.

• give a proportional download rate for all peers and to prevent free
riders.

• globally, a better utilization of the client’s resources.

There are several criteria a good choking algorithm should meet:

• it should cap the number of simultaneous uploads for good TCP per-
formance.

• it should avoid choking and unchoking quickly, known as fibrillation.

• it should reciprocate to peers who let it download.

• finally, it should try out unused connections once in a while to find
out if they might be better than the currently used ones, known as
optimistic unchoking.

When in leecher state, the choke algorithm is called every ten seconds
to avoid fibrillation14. Reciprocation and number of uploads capping is

14Ten seconds is a long enough period of time for TCP to ramp up new transfers to
their full capacity.
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managed by unchoking the four peers which have the best upload rate and
are interested. This maximizes the client’s download rate. These four peers
are referred to as downloaders, because they are interested in downloading
from the client. Peers which have a better upload rate (as compared to the
downloaders) but are not interested get unchoked. If they become interested,
the downloader with the worst upload rate gets choked. If a client has a
complete file, it uses its upload rate rather than its download rate to decide
which peers to unchoke.

Optimistic unchoking Strict policies often result in suboptimal sit-
uations, such as when newly joined peers are unable to receive any data
because they don’t have any pieces yet to trade themselves or when two
peers with a good connection between them do not exchange data simply
because neither of them wants to take the initiative. To counter these effects,
the official BitTorrent client program uses a mechanism called optimistic
unchoking, where the client reserves a portion of its available bandwidth for
sending pieces to random peers (not necessarily known-good partners, so
called preferred peers). It allows to evaluate the download capacity of new
peers in the peer set, and it allows to bootstrap new peers that do not have
any piece to share by giving them their first piece.

At any one time there is a single peer which is unchoked regardless of its
upload rate (if interested, it counts as one of the four allowed downloaders).
Which peer is optimistically unchoked rotates every 30 seconds15. Newly
connected peers are three times as likely to start as the current optimistic
unchoke as anywhere else in the rotation. This gives them a decent chance of
getting a complete piece to upload.

1.2.8 Network Impact

According to isoHunt16 the size of the torrents is currently more than 1.1
Petabytes. CableLabs, the research organization of the North American cable
industry, estimates that BitTorrent represents 18% of all broadband traffic.
In 2004, CacheLogic put that number at roughly 35% of all traffic on the
Internet. The discrepancies in these numbers are caused by differences in
the method used to measure P2P traffic on the Internet. Routers that use
NAT must maintain tables of source and destination IP addresses and ports.
Typical home routers are limited to about 2000 table entries while some more
expensive routers have larger table capacities. BitTorrent frequently contacts
300-500 servers per second rapidly filling the NAT tables; in addition, it

15Thirty seconds is enough time for the upload to get to full capacity, the download to
reciprocate, and the download to get to full capacity.

16isoHunt is a BitTorrent index with over 1.4 million torrents in its database and 16
million peers from indexed torrents. With 7.4 million unique visitors as of May 2006,
isoHunt is one of the most popular BitTorrent search engines.
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Figure 1.9: Ipoque, a German ISP, released a report [43] on P2P traffic
usage in 2007. We can see that BitTorrent is the most used
P2P program.

consumes very quickly ISPs bandwidth. For this reason ISPs may decide to
throttle the bandwidth of those customers who frequently use P2P programs17

[46].

1.2.9 BitTorrent adoption

A growing number of individuals and organizations are using BitTorrent to
distribute their own or licensed material. Independent adopters report that
without using BitTorrent technology and its dramatically reduced demands
on networking hardware and bandwidth, they could not afford to distribute
their files.

Film, video and music

In general, BitTorrent’s non-contiguous download methods have prevented
it from supporting progressive downloads or streaming playback. But com-
ments made by Bram Cohen in January 2007 suggest that streaming torrent

17Over the past weeks more and more, Comcast users started to notice that their
BitTorrent transfers were cut off. Most users report a significant decrease in download
speeds, and even worse, they are unable to seed their downloads. A nightmare for people
who want to keep up a positive ratio at private trackers and for the speed of BitTorrent
transfers in general.
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downloads will soon be commonplace and ad-supported streaming appears
to be the result of those comments.

• BitTorrent Inc. has amassed a number of licenses from Hollywood
studios for distributing popular content at the company’s website.

• movies that have entered the public domain are available over BitTorrent.
Because they are no longer profitable, there is little business incentive
to pay for bandwidth hosting costs. BitTorrent allows these films to
reach audiences.

• Ourmedia.org, the Open Media Directory, offers free and legal public
domain movies through BitTorrent.

• Nine Inch Nails have offered free downloads of their last few albums.
For the higher quality (i.e., larger file sized) versions of the tracks,
Nine Inch Nails leader, Trent Reznor, has chosen to use BitTorrent to
distribute his music. In a text file distributed with the album Ghosts
I, Reznor states “Now that we’re no longer constrained by a record
label, we’ve decided to personally upload Ghosts I, the first of the four
volumes, to various torrent sites, because we believe BitTorrent is a
revolutionary digital distribution method, and we believe in finding
ways to utilize new technologies instead of fighting them...”. He has
also released via BitTorrent the original Garageband files for fans to
mix and create new content.

• Sub Pop Records releases tracks and videos via BitTorrent Inc. to
distribute its 1000+ albums. The band Ween uses BitTorrent to
distribute free audio and video recordings of live shows. Furthermore,
Babyshambles and The Libertines (both bands associated with Pete
Doherty) have extensively used torrents to distribute hundreds of demos
and live videos.

• podcasting software is starting to integrate BitTorrent to help pod-
casters deal with the download demands of their MP3 radio programs.
Specifically, Juice and Miro (formerly known as Democracy Player) sup-
port automatic processing of .torrent files from RSS feeds18. Similarly,
some BitTorrent clients, such as µTorrent, are able to process web feeds
and automatically download content found within them.

• music sharing portal Jamendo offers a free, legal and unlimited music
from over 5500 artists via BitTorrent.

• public domain audiobooks are available at legaltorrents.com.
18RSS is a family of Web feed formats used to publish frequently updated works – such

as blog entries, news headlines, audio, and video – in a standardized format. An RSS
document (which is called a feed, web feed, or channel) includes full or summarized text,
plus metadata such as publishing dates and authorship.

Ourmedia.org
legaltorrents.com
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Broadcasters

• in 2008 CBC became the first public broadcaster in North America to
make a full show (Canada’s Next Great Prime Minister) available for
download using BitTorrent.

• the Norwegian Broadcasting Corporation (NRK) have since March 2008
experimented with BitTorrent distribution from this site. Only selected
material in which NRK owns all royalties are published. Responses
have been very positive, and NRK is planning to offer more content.

Software

• Blizzard Entertainment uses BitTorrent (via a proprietary client called
the “Blizzard Downloader ”) to update their World of Warcraft game.

• many major open source and free software projects encourage BitTorrent
as well as conventional downloads (HTTP, FTP, . . . ) of their products
to increase availability and reduce load on their own servers, especially
when dealing with larger files.

• distributing system patches: apparently, software updates are getting so
big these days that simply downloading them from a server is becoming
prohibitively time consuming, especially when the same updates need
to be applied to many different machines19.

A Dutch university has some 6500 desktop PCs in ten locations, which
on occasion need to download 3.5GB worth of different types of updates.
That’s a handsome 22.2TB in total. In a traditional client-server world,
that’s some modest lifting. In fact, INHOLLAND University’s IT
department used to have almost two dozen servers distributed over the
university’s locations to serve up these downloads. The school was able
to retire 20 of them after adopting BitTorrent to distribute updates.
The peer-to-peer protocol allows PCs to download most of the updates
from each other – the remaining servers are mostly needed to send out
the first few copies and then coordinate the up – and downloading. One
of the advantages of the BitTorrent protocol is that it uses bandwidth
where it can find it: faster links are automatically used more. Using
this technology, updating all 6,500 PCs can be done in less than four
hours. Previously, this took four days.

The university’s management team was reluctant to adopt the peer-to-
peer technology, but they quickly changed their minds after seeing a
demonstration. Students and staff who think they can use the modified

19Microsoft is currently developing a Windows Update mechanism [8] based on BitTor-
rent.
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BitTorrent client for other purposes will be disappointed to learn that
the system is completely locked down.

We identify three main scenarios where BitTorrent could be used:

• download of popular files: if peers cooperate among them, this is the
only case where BitTorrent works perfectly. Nevertheless, peers do not
necessarily cooperate: most of the people have an asymmetric band-
width (i.e. ADSL), so the upstream capacity is less than downstream.
In addition, people close the BitTorrent client whenever the download
process is finished – this will decrease the seeders in the swarm, leading
to a slower download process for other users. To gain efficiency in
downloading, files must be popular (many peers are interested in them).
However, as long tail theory explained, popular files are just too few,
and they are dominated by less popular files that most different users
want. In other words, long tail contains many users which have different
needs, whilst the popular peak contains users that almost want the
same files, which are, in this way, shared and downloaded by much
more people. Such files become popular and gain success on BitTorrent
swarms.

• progressive download or streaming (Video-on-demand): the order of
the received pieces matters. At the moment, there is not a download
strategy to prioritize more urgent pieces (those near to playout time).
In addition, we can encounter start-up delay because the receiver waits
for the buffer to be filled to avoid interruptions. As a consequence, TV
zapping is not possible and the interactivity is much more reduced.

• live streaming for movies, and music: the order of the received pieces
matters and we require minimum latency on start-up. In addition, the
distribution must be very fast: in this way, there would not be a delay
between the transmission event and its reception. On the minimum
delay, we can use some results [17] to determine the best scenario,
where upload must be done in sequential mode using a fastest peers
first strategy (which involves a “keep uploading” policy rather than a
“upload for given time interval”). We may also consider that live events
have not a defined duration. . . how could we handle the download and
validation process? There is a study [25] that describe a solution of
this problem: briefly, they propose a rotating sliding window over a
fixed set of pieces in order to project an infinite video stream onto a
fixed number of pieces.

1.2.10 Legal issues

There has been much controversy over the use of BitTorrent trackers. Bit-
Torrent metafiles themselves do not store copyrighted data, hence BitTorrent
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itself is not illegal – it is the use of it to copy copyrighted material that
contravenes laws in some locations.

There are two major differences between BitTorrent and many other peer-
to-peer file-trading systems, which advocates suggest make it less useful to
those sharing copyrighted material without authorization. First, BitTorrent
itself does not offer a search facility to find files by name. A user must
find the initial torrent file by other means, such as a web search. Second,
BitTorrent makes no attempt to conceal the host ultimately responsible for
facilitating the sharing: a person who wishes to make a file available must
run a tracker on a specific host or hosts and distribute the tracker address(es)
in the .torrent file. Because it is possible to operate a tracker on a server
that is located in a jurisdiction where the copyright holder cannot take legal
action, the protocol does offer some vulnerability that other protocols lack.
It is far easier to request that the server’s ISP shut down the site than it
is to find and identify every user sharing a file on a peer-to-peer network.
However, with the use of a distributed hash table (DHT), trackers are no
longer required, though often used for client software that does not support
DHT to connect to the stream.

1.2.11 Technologies built on BitTorrent

The BitTorrent protocol is still under development and therefore may still
acquire new features and other enhancements such as improved efficiency.
In the following paragraphs we are going to describe only a few of those
enhancements.

Multitracker

Multitracker is an extension to the BitTorrent metadata format proposed by
John Hoffman and implemented by several indexing websites. It allows the
use of multiple trackers per file, so if one tracker fails, others can continue
supporting file transfer. It is implemented in several clients, such as Vuze,
BitComet, BitTornado, KTorrent and µTorrent. Trackers are placed in
groups, or tiers, with a tracker randomly chosen from the top tier and tried,
moving to the next tier if all the trackers in the top tier fail.

Torrents with multiple trackers can decrease the time it takes to download
a file, but also has a few consequences:

• users have to contact more trackers, leading to more overhead-traffic.

• torrents from private trackers suddenly become downloadable by non-
members, as they can connect to a seed via an open tracker.
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Distributed trackers

In June 2005, BitTorrent, Inc. released version 4.2.0 of the Mainline Bit-
Torrent client. This release supported trackerless torrents, featuring a DHT
implementation which allowed the client to use torrents that do not have a
working BitTorrent tracker. Current versions of the official BitTorrent client,
µTorrent, BitComet, and BitSpirit all share a compatible DHT implementa-
tion that is based on Kademlia. Vuze uses its own incompatible DHT system
called the distributed database, but a plugin is available which allows use of
the mainline DHT.

Most BitTorrent clients also use peer exchange (PEX) to gather peers
in addition to trackers and DHT. Peer exchange checks with known peers
to see if they know of any other peers. With the 3.0.5.0 release of Azureus,
now known as Vuze, all major BitTorrent clients now have compatible peer
exchange.

RSS feeds

A technique called broadcatching combines RSS with the BitTorrent protocol
to create a content delivery system, further simplifying and automating
content distribution. The RSS feed will track the content, while BitTorrent
ensures content integrity with cryptographic hashing of all data, so feed
subscribers will receive uncorrupted content.

One of the first software clients (free and open source) for broadcatching
is Miro. Other free software clients such as PenguinTV and KatchTV are
also now supporting broadcatching.

Encryption

Since BitTorrent makes up a large proportion of total traffic, some ISPs
have chosen to throttle (slow down) BitTorrent transfers to ensure network
capacity remains available for other uses. For this reason methods have been
developed to disguise BitTorrent traffic in an attempt to thwart these efforts.

Protocol header encrypt (PHE) and Message stream encryption/Protocol
encryption (MSE/PE) are features of some BitTorrent clients that attempt to
make BitTorrent hard to detect and throttle. At the moment Vuze, Bitcomet,
KTorrent, Transmission, Deluge, µTorrent, MooPolice, Halite, rTorrent and
the latest official BitTorrent client (v6) support MSE/PE encryption.

In general, although encryption can make it difficult to determine what
is being shared, BitTorrent is vulnerable to traffic analysis. Thus even
with MSE/PE, it may be possible for an ISP to recognize BitTorrent and
also to determine that a system is no longer downloading, only uploading,
information and terminate its connection by injecting TCP RST (reset flag)
packets.
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Decentralized keyword search

Even with distributed trackers, a third party is still required to find a specific
torrent. This is usually done in the form of a direct hyperlink from the
website of the content owner or through indexing websites like The Pirate
Bay or Torrentz.

In May 2007 Cornell University published a paper proposing a new
approach to searching a peer-to-peer network for inexact strings [35] which
could replace the functionality of a central indexing site. A year later, the
same team implemented the system as a plugin for Vuze called Cubit and
published a follow-up paper reporting its success [34].





Chapter 2

Digital Fountain Codes

2.1 Noisy Channel Features

From “A Mathematical Theory of Communication”, the famous article written
by Claude Shannon in 1948, Information Theory evolved by error correction
codes. They are essential to put into communication always new and more
powerful electronic devices. Noise is present in every type of communication,
it is caused by imperfections in the channel where the message travels. Talking
with other people is an example of a communication system. The voice we
produce may encounter other sounds, or modifications: it may be because
of the wind. In the worst conditions, there may be a total misunderstood
between speaker and listener.

In figure 2.1 on the next page, we can see that the message is added
with noise, passing through the channel and it modifies itself. This system
is not reliable, because it does not have any correction of the distorted
message. According to the type of signal, we may distinguish three different
communication systems:

• discrete: digital devices.

• continuous: analog devices such as radio and analog television.

• mixed: PCM acronym of Pulse Code Modulation, the conversion of
signals from analog to digital.

We are going to use bits so our reference model is the discrete one, moreover
our system must be without memory:

• output at time i depends only on input at time i.

• input and output alphabet is finite, where alphabet is the set of symbols
used to communicate.
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Figure 2.1: Theoretical model of a communication system.

In a channel without noise, a source can send a precise amount of information.
This is the capacity of a noiseless channel [36]:

C = lim
T→∞

N(T )
T

N(T ) is the number of allowed signals of duration T . We may even calculate
its entropy :

H = −K
N∑

i=1

pi · ln pi

where pi is the set of probabilities of each transmitted symbol. In a binary
channel we obtain:

H = −(p · log2 p+ q · log2 q)

p is the probability to transmit one symbol and q = 1− p is the probability
to transmit the other symbol.

Now we have all the elements to define the capacity of a channel with
noise having an input x and an output y:

C = max(H(x)−Hy(x))

Hy(x) is the entropy of the input when the output is given, for convenience
it is called equivocation. It is a conditional probability and measures the
average ambiguity of the received signal. It is usually referred as the error
rate. Let us give the definition of rate for any transmission:

R = H(y)−Hy(x)

According to the Shannon theorem [36], it is impossible to send data at a
rate over the capacity of the channel: this is the limit that the source has, to
guarantee the integrity of information it sends.
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Figure 2.2: Theoretical model of a communication system with encoder
and decoder. If the alteration of the message is kept within
estimated limits, the decoder can recover the original message
correctly.

To improve the reliability of communications, we may follow both a
physical and a computational approach. The first has the aim to reduce the
noise in the devices. The second tries to correct the noisy messages that
arrive at destination, according to the possible error nature. The two methods
are often combined in projects of electronic engineering. The difficulty is to
adopt the right compromise between these solutions in order to satisfy the
budget costs.

Since we are at the beginning of the project, we focus on the computa-
tional approach. This leads us to create a new diagram model of a general
communication system (figure 2.2).

2.2 Channel Models

Whatever the source transmits, data may encounter two destinies:

1. to arrive modified: the receiver may misunderstood the message.

2. not to arrive at all: the receiver does not get the message at all.

With a binary alphabet, these situations are explained through two models
respectively: Binary Symmetric Channel (BSC) and Binary Erasure Channel
(BEC).

What may happen in a BSC is represented in figure 2.3 on the next
page. The output could get a different message. Here the risk is to send
0 and receive 1 and vice versa. f is called either failure probability or flip
probability. Figure 2.4 on the following page shows the diagram of a BEC.
Error correcting codes (ECC) are used when dealing with BSC channels.
This time data will be correct, if they arrive at destination; if they got lost,
the receiver does not have any message. e is called erasure probability. An
example of BEC is the Internet. Erasure recovery codes are used with BEC
channels.
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Figure 2.3: A BSC with its probabilities of failure (f) and success (1− f)
in sending one bit from a source x to a receiver y.
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Figure 2.4: A BEC with its probabilities of erasure (e) and success (1− e)
in sending one bit from a source x to a receiver y.

It is difficult to find real channels belonging to one type or the other.
Usually they are the superimposition of BEC and BSC. These models are
very high level simplifications of actual physics means of communication. But
they help avoiding too complex computations in the study of reality. Since
we are going to investigate data transmission mainly over the Internet, we
assume that our exchange of information takes place in a BEC.

2.3 ARQ: Automatic Repeat and reQuest

ARQ is based on the retransmission of missing data packets, which is triggered
by explicit or implicit (based on timeouts) ACK/NACKs from the receiver(s).
Figure 2.5 on the next page is an example of transmission with ARQ. As
you notice, multiple retransmissions can be necessary to insure delivery of all
data packets to a receiver, but on average the number of retransmissions for
each packet is 1

(1−p) , where p is the packet loss rate (PLR). For example, if
(PLR) is equal to 10%:

• receiver asks for 100 packets the first time. Only 90 arrives at destina-
tion.

• receiver asks for these 10 packets that it is missing. Only 9 arrives at
destination.
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Figure 2.5: In ARQ based transmissions, the client sends requests for the
missing packets. The server transmits the requested packets.
This goes on until the client has got the whole file.

• receiver asks for the single packet that it is missing and it arrives at
destination.

In this case there are 11 retransmissions, for a total of 3 request-answer
rounds.

ARQ is generally used in unicast protocols, because it is very effective,
simple to implement, and it does not require any processing of the data
stream. The are a few drawbacks in ARQ-based protocols:

• the need for a feedback channel (whose use can be minimized though).

• the time (a full round-trip time (RTT) as a minimum) required to recover
missing packets. This is an important limitation when propagation
delays are very large (e.g. in the case of fast satellite links or deep
space communications), or when there are real-time applications (e.g.
full duplex voice/video conferencing and control system).

ARQ scales badly to multicast protocols and large groups, because the chance
of uncorrelated losses grows with the size of the group, and that might require
the retransmission of the majority of packets, even in presence of moderate
PLR. This phenomenon is tolerable only in a few cases, e.g. when the group
is small, or receivers have similar features and loss patterns. In all other
cases ARQ performs poorly, since the aggregate PLR can become very close
to 1. The transmitter needs to know precisely from receivers which blocks to
retransmit. If the request does not arrive within a certain time (timeout),
the server may deliver many times the same lost packet. This is known as
feedback implosion problem [21]. Therefore, introducing redundancy in sent
packets may be better, so the receiver can recover the errors on its own.
This may lower the capacity of the channel, but it avoids delivering different
amounts of missing data. FEC based protocols make this possible [31].
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2.4 FEC: Forward Error Correction

FEC operates on a different principle [21] [22], namely it anticipates some
amount of losses, and obviates by sending redundant data which allow the
receiver to reconstruct up to a certain number of missing packets. The
communication process thus includes an encoding phase at the sender, where
redundant packets are constructed from the source data, and a decoding phase
at the receiver, where source data are extracted, if possible, from the available
packets (see figure 2.6 on the facing page). Because of the redundant data
being transmitted, the PLR after decoding - i.e. the probability that some
data packet cannot be reconstructed - can be made much lower than the raw
PLR on the communication channel. FEC by itself does not guarantee reliable
delivery (unless the number of redundant packets goes to infinity), but, by
choosing a suitable encoding, the residual PLR at the receiver can be made
arbitrarily small (obviously at a cost in the total transmission time), and those
residual cases can be dealt with by using an ARQ-based protocol, if necessary
at all. FEC can be computationally expensive, since the entire data stream
must be processed by the encoder, so that each transmitted packet carries
information on a (possibly large) number of source data packets. Decoding can
be expensive as well, depending on the encoding technique being used and the
actual amount of losses experienced. In reliable multicast protocols, though,
the advantages of FEC may overcome the encoding/decoding overheads. In
fact, to some extent, the presence of the decoding process decouples receivers
from each other. Independent losses do not combine so badly anymore,
because the same redundant data allows different receivers to reconstruct
distinct missing packets. The effect of independent losses becomes less
important also because of the presence of fewer data units (groups of K
packets as opposed to single packets) and of a much lower PLR after decoding.
These combined events allow FEC-based multicast protocols to scale to much
larger groups than plain ARQ-based protocols.

2.5 Erasure codes

In network protocols, FEC can be implemented using erasure codes, which
are a subset of error control codes, largely used in the telecommunication field.
Basically, an (N,K) block erasure code takes K source packets and produces
N encoded packets in such a way that any subset of K encoded packets (and
their identity) allows the reconstruction of the source packets. Block codes
are rigorously based on finite field arithmetic and abstract algebra. They can
be used either to detect or to correct errors. They have the property to be
without memory: there is no correlation between the symbols of a code-word
and the next. A block code is defined as:

C(N,K)
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Figure 2.6: A graphical representation of the encoding/decoding process.
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Figure 2.7: In FEC based transmissions the client receive a continue flux of
packets, without reckoning if some of them got lost. The server
continues to provide encoded packets for a certain amount of
time.

where:

• C is the matrix of the code-words.

• N is the length of binary encoded data that are actually sent.

• K is the length of the pure binary information to transmit.

The most used are linear block codes : the code vectors are linear combinations
of information bits. In this way the encoding and decoding complexity is
significantly reduced. Linear block block codes can be represented in matrix
form as:

y = Gx (modulo-2)

where x is the source data (a vector of size N), y is the encoded data (a vector
of size N) and G is an N ×K matrix called the encoding matrix. G must



42 Chapter 2: Digital Fountain Codes

be structured in such a way that any subset of K of its rows has full rank,
so that the original data can be reconstructed by using any K components
from y. The code words y are the set of vectors satisfying y ·HT = 0 mod 2
operation, where H is the parity check matrix.

In some cases, erasure codes are trivial to build. For generic N and K,
erasure codes can be constructed and studied basing on the properties of
linear algebra. For example, when the first K × K block of G forms an
identity matrix, the code is called systematic. The encoded packets of a
systematic code include the source packets in clear (systematic codes are
much cheaper to decode when only a few erasures are expected).

G =


1 0 . . . 0 p0,0 . . . p0,N−K−1

0 1 . . . 0 p1,0 . . . p1,N−K−1
...

...
. . .

...
...

. . .
...

0 0 . . . 1 pK−1,0 . . . pK−1,N−K−1


For example, if we want a (K + 1,K) systematic code, G is the identity
matrix followed by a row vector of all ones, and the redundant data is just
the sum of the source data elements.

2.5.1 Tanner graphs

Robert M. Tanner [37] proposed another representation to create, by recursive
techniques, larger error correcting codes from smaller ones. Tanner graphs
are bipartite graphs, they are partitioned into sub-code nodes and digit nodes.
These denote respectively the rows and the columns of the parity-check matrix
H. If a nonzero entry exists in the intersection of the corresponding row and
column, an edge connects a sub-code node to a digit node. Figure 2.8 on the
next page is an example to explain the correlation between the matrix and
the graph.

In mathematics the density of a graph can be calculated as:

D =
| E |
| V |

where | E | denotes the number of edges and | V | is the number of vertices.
This definition only works if | V |> 0; we define D to be 0 if the graph has
no vertices. A graph with a low number of edges is defined as sparse. So a
code that can be represented with a sparse Tanner graph is a sparse graph
code. Dealing with linear codes, the terminology is slightly different.

• digit nodes become transmitted bits: bit nodes.

• sub-code nodes are the constraints to satisfy: parity check nodes.
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sub-code nodes

digit nodes

1st 2nd 3rd 4th 5th

H =


1 1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 0
0 1 0 1 0 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 1 1 0


Figure 2.8: The matrix represents the connections between sub-code nodes

(rows) and digit nodes (columns). Rows are exactly ordered as
the sub-code nodes in the graph.

If the length of a code vector is N and the rate is R = K/N , the number of
constraints is of order M = N −K. Any linear code can be described by a
graph. In a sparse graph code each constraint involves a small number of
variables only, thus the number of edges in the graph scales almost linearly
with N .

2.6 LDPC erasure codes

Low-density parity-check (LDPC) [23] codes are erasure codes and they are
used in forward error correction; LDPC are a subset of linear block codes.
The name comes from a feature of their parity-check matrix: it contains
only a few 1’s in comparison to the amount of 0’s. They are also known as
Gallager codes in honour to Robert G. Gallager, the first to conceive them
in early 1960’s. The main advantage of LDPC codes is that they provide
a transfer rate very close to the capacity of the channel. Moreover, they
have linear time complex algorithms for decoding and they are suited for
implementations that make heavy use of parallelism [16].
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A regular Gallager code has a parity check matrix H, in which every row
has the same number j of 1’s and every column has the same number k of
1’s. The connections in the graph are made randomly. We may calculate the
code rate:

R =
K

N
= 1− j

k
≤ 1 (2.1)

In an irregular Gallager code the matrix H is always sparse, but it has not
the same number of 1’s in its columns or rows. Digital Fountain codes are an
example of irregular Gallager code.

They are the result of a long process of studying on LDPC codes by D.
McKay, M. Luby, M. Mitzenmacher, A. Shokrollahi, J. Byers and D. Spielman.
They developed and patented different types of LDPC codes [24] that are
based on the scheme of Digital Fountain: Tornado codes, LT codes and Raptor
codes. These patents belong to Digital Fountain Inc., founded by Luby after
developing his Luby Transform codes [19]. Regular and irregular LDPC codes
have been applied to Forward Error Correction (FEC) methods, defined by
Internet Engineering Task Force (IETF). Nowadays two kinds of solutions
exist to use FEC in transferring large data blocks: a free of patents solution
proposed by INRIA [29] about a low density generator matrix (LDPC/LDGM)
[30] and Raptor codes [33] patented by Digital Fountain Inc.

2.7 Digital Fountain Codes

When we think about a fountain of water, we image a spring where water
comes out of a hole in the ground, falling around in form of drops. Now,
if you are thirsty, you put a glass under the drops and when you have
enough you can drink, irrespective of the particular drops that fill the glass
(figure 2.9 on the facing page). Digital Fountain rely upon the same principle:
a file is subdivided into parts, then encoded into packets which are delivered
from a source to a destination; when the receiver has got enough symbols
to rebuild the whole file, it stops the communication. In this idealized
solution, each receiver can reconstruct an exact copy of the original file from
the received encoding packets, independent of which servers generated the
encoding packets, independent of losses, and independent of the intervals of
time the receiver was joined to the sessions. No matter if some parts got
lost, or in which order they are received, the task is accomplished either way.
Ideally, the amount of processing required by the servers to generate encoding
packets and by the receivers to reconstruct the file from received encoding
packets is minimal.

More technically, Fountain codes are rateless because a potentially limitless
sequence of encoding symbols can be generated from a given set of source
symbols such that the original source symbols can be recovered from any
subset of the encoding symbols of size equal to or only slightly larger than the
number of source symbols. Regardless of the statistics of the erasure events
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Figure 2.9: The principle of a Digital Fountain is the same as a fountain of
water.

on the channel, we can send as many encoded packets as are needed in order
for the decoder to recover the source data. Fountain codes are known for
having efficient encoding and decoding algorithms and that allow the recovery
of the original K source symbols from any K ′ of the encoding symbols with
high probability, where K ′ is just slightly larger than K1.

Different schemes and rules exist to encode and send data over the Internet
using Digital Fountain [22] [20]. Figure 2.7 on page 41 illustrates a general
model of Digital Fountain based transmission. The source generates encoded
packets using the chunks of the object to send; then it delivers them to
destination. The receiver decodes the received data in order to reassemble
the source object. In this kind of communication any encoded symbol is
useful and there are not duplicates; the receiver does not worry about the
lost packets. It does not even reckon if any loss happens. Here, no more
requests for missing parts are sent to the source and there is no need to wait
till lost packets are resent. The receiver may use any packet that arrives, to
reconstruct the whole object.

We need to know what the hurdles are implementing an FEC scheme like
Digital Fountain in a communication system. For this reason, we will test
the performances of various types of sending patterns, always based upon the
XOR between packets. We have two parameters to evaluate the efficiency of
an error correction code:

• overhead: K ′ −K, where K is the length of file in packets and K ′ is
the total number of packets sent to reassemble it.

1Since K′ = K + H, where H is the overhead, Digital Fountain codes are near optimal
codes. We say that a Fountain code is optimal if the original K source symbols can be
recovered from any K encoding symbols.
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• computational complexity: the total number of XOR operations among
packets.

2.7.1 Why use erasure coding?

The traditional scheme for transferring data across an erasure channel depends
on continuous two-way communication:

• the sender encodes and sends a packet of information.

• the receiver attempts to decode the received packet. If it can be
decoded, the receiver sends an acknowledgment back to the transmitter.
Otherwise, the receiver asks the transmitter to send the packet again.

• this two-way process continues until all the packets in the message have
been transferred successfully.

Certain networks, such as ones used for cellular wireless broadcasting, do
not have a feedback channel. Applications on these networks still require
reliability. Fountain codes in general, and LT codes in particular, get around
this problem by adopting an essentially one-way communication protocol:

• the sender encodes and sends packet after packet of information.

• the receiver evaluates each packet as it is received. If there is an error,
the erroneous packet is discarded. Otherwise the packet is saved as a
piece of the message.

• eventually the receiver has enough valid packets to reconstruct the
entire message. When the entire message has been received successfully
the receiver signals that transmission is complete.

Globally, a Digital Fountain allows any number of heterogeneous clients to
acquire bulk data with optimal efficiency at times of their choosing: in fact,
receivers may join the stream at any time, then listen until they receive all
distinct packets comprising the transmission. Moreover, no feedback channels
are needed to ensure reliable delivery, even in the face of high loss rates.

During this thesis, we will focus on three Digital Fountain implementa-
tions:

• Random Fountain codes.

• LT codes.

• Raptor codes.

We are going to describe Random Digital Fountain and Raptor codes, since
LT codes are included in Raptor.
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2.7.2 Encoding and decoding

In the following paragraphs we describe Digital Fountain codes encoding and
decoding methods. They are common to Random Digital Fountain and LT
codes (and thus also to Raptor codes).

The encoding process

In a Fountain code [23] we want to encode a file of sizeK packets s1, s2, . . . , sK .
At every iteration, labeled with n, the encoder generates K random bits
{Gkn}. The transmitted packet tn is the bitwise sum, modulo 2, of the source
packets where Gkn is 1.

tn =
K∑

k=1

skGkn (2.2)

This sum is the result of executing a succession of XOR’s among packets. We
can think of every set of K random bits as a new column that is added to
the generator matrix G. This encoding operation defines a graph connecting
encoded pieces to source pieces. If the mean degree is significantly smaller
than K then the graph is sparse. To produce tn we proceed in the following
manner:

1. choose a number between 1 and K using a random number generator2.
This is called degree and indicated as dn. The degree is fixed and it is
chosen following a particular distribution.

2. pick up dn pieces of the file among K. This is achieved by using
random numbers that are invariably taken from a uniform distribution
on (0, N ], where N is the number of pieces into which the message
has been divided. tn is the exclusive-or operation between the selected
source pieces.

The information about the selected pieces must be sent together with data,
in order to help the encoder to recover the file (figure 2.10 on the following
page); in one approach, each symbol is accompanied with an identifier which
can be used as a seed to a pseudo-random number generator to generate this
information, with the same procedure being followed by both sender and
receiver.

The decoding process

Now the file must be reassembled without errors. Let us assume that the
receiver knows the part of the G matrix associated to the packets it has. This
may happen in two ways:

2The choice of a distribution for the random number generator is a key point: it will
affect overhead and number of XOR operations, as we discuss in the following paragraphs.
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Figure 2.10: Example of packet generation in a Digital Fountain.

• the sender synchronizes with the receiver the same random numbers
generator. So it knows what vectors of G it receives.

• transmit data together with a random key (usually of 32 bits) kn. It is
used to determine the K bits {Gkn}Kk=1 by a pseudo-random process.

The received matrix, called G from now on, has a size ofK×N . To reassemble
the file there must beN = K packets at least. If the matrixK×K is invertible
(modulo 2), G can be inverted and we obtain:

sk =
N∑

n=1

tnG
−1
kn (2.3)

To begin the file decoding, we must create a graph using the information
stored in the received packets: we associate the XOR’ed pieces (sk) to source
nodes and the symbols received (tn) to check nodes. This is like a Tanner
graph where there are K source nodes and N check nodes. The inversion
process for a K ×K matrix can be done in various ways:

• Message passing. Let’s consider an example.

– look for a check node tn connected to only one source packet (the
missing of such a situation causes the failure of this task).

– set sk = tn and add tn to a list L.

– add all the check nodes connected to sk to the list L.

– execute for all the tn present in L the operation tn = tn + sk

(XOR).

– remove all the links to sk.

– repeat from the beginning until all the source packets has been
determined.
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Figure 2.11: Message passing algorithm for K = 3 and N = 4. Notice
the progressive decoding as soon as new source packets are
discovered.

Figure 2.11 shows the decoding process in case each packet of the file
is just 1 bit.

• Gaussian elimination, which has a complexity of O(K3). Let’s consider
the main idea: suppose A is a n× n matrix and you need to calculate
its inverse. The n × n identity matrix is augmented to the right of
A, forming a n × 2n matrix (the block matrix B = [A, I]). Through
application of elementary row operations and the Gaussian elimination
algorithm [45], the left block of B can be reduced to the identity matrix
I, which leaves A−1 in the right block of B. If the algorithm is unable
to reduce A to triangular form, then A is not invertible.

Even with no losses in the channel, it may happen to need a number of
packets slightly greater thanK. As the file pieces to add in the XOR operation
are randomly chosen, the packets received may sometimes be redundant. So
the decoding process requires some more data to get the file completely
recovered. This exceeding number of information is called overhead. The
result is equation (2.4) when E = 0 (overhead), while figure 2.12 on the
following page shows the probability of not inversion (1−Pi) with E variable.

Pi =
K−(1+E)∏

j=0

1− 2−(K−j) (2.4)

2.7.3 Designing the degree distribution

Digital Fountain are based upon the XOR operation between randomly chosen
pieces. In this way we cannot foresee what parts are picked up at any time,
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(a) 1− Pi. After K + 10 packets we are about sure to recover the file correctly.

(b) semilogy(1− Pi). Here we can see better the failure rate.

Figure 2.12: Failure probabilities on Fountain codes.
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the result is a redundancy in the sent data. This situation in what we want:
since we cannot know the loss percentage for any channel at any time, we
use random redundancy to supply the erasures. This is the principle of our
FEC transmission. But a too high redundancy may raise the amount of
XOR operations, while if it is too low we may wait for a long time to recover
the file and the overhead goes high. We identify two scenarios according
to the degree (dn) selection. In these example, dn identifies the amount of
pieces (packets) the encoder picks up from the file to send. The parts are
encoded together using XOR operation to form a single packet. So the degree
represents also the number of 1’s each vector has in the decoding matrix.

• defined random: dn = dfixed with binomial variation. This will tune
the random number generator to choose dn around a certain percentage
of K. If we have K = 100, selecting dn = 50, the symbols generated
would contain the XOR’ed pieces of about 50% of the object. The
distribution of the ones in matrix varies like a binomial so the figure
would be a narrow bell with a peak at 50%. Lowering dn we get more
single packet than before.

• defined function: dn defined by a distribution function. This function
drives the random generator to choose among a specified set of degrees,
created by a rough mix of the features of both the ideal soliton and the
robust soliton3. This scenario reduces the binary operations during the
decoding process, as it contains a specified amount of low degrees.

To achieve a low number of XOR’s we need to keep dn low, but this is not
enough to guarantee the success in reassembling the file.

2.7.4 Random Digital Fountain codes

In Random Digital Fountain codes, data bits to be XOR’ed are chosen
randomly. The degree distribution is fixed and is defined random: every data
bits is selected with 50% probability. If there are N data bits, the number of
selected bits (degree) has a binomial distribution.

Targets and performances

Random Digital fountain codes improve the way to transmit data over a
channel with erasures eliminating the requests for resending missing pieces.
In the above description, we saw that they require XOR operations to have
the file available and there is also the overhead. These are the two parameters
to examine and if they both are not kept small the communication will not
be efficient.

3Ideal soliton distribution and robust soliton distribution are two distribution functions
used in LT codes [19].
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Overhead As the decoder picks up parts from the file randomly, we cannot
control what packets we have already transmitted: here the problem of
redundancy arises. For this reason, we must wait until we receive the right
data to recover the file completely; this could happen in few more packets, but
nobody guarantees. Now, we suppose that the number of received packets is
K ′, which is K +H, where H is the overhead. To estimate H, we introduce
the probability of a failed decoding (F ), due to an insufficient number of
packets collected:

P (F ) ≤ 2−H (2.5)

Now, given K, it is very easy to estimate K ′ and thus the corresponding
overhead H = K ′ − K. For example, if K = 1000 we estimate that K ′

must be at least 1020, with a corresponding overhead of 2%. Notice that
overhead depends only on the probability of failed decoding desired and it is
independent from K.

Complexity Another important feature is bound to the creation of a
Digital Fountain code: to recover the whole file from the packets arrived we
have to execute XOR operations. The computation is strongly related to the
number of 1’s present in the G matrix: the more the 1’s are, the higher is
the amount of calculations. As a consequence both the encoding and the
decoding processes may influence this parameter. Here we understand the
importance of using distributions that provides the creation of packets having
low degrees. An ideal decoding algorithm should try to decode packets within
a reasonable time and with as less number of arrivals as possible. But this
would push high the number of XOR operations and the result would be
slow motion or freezing frames due to a congestion of the hardware. To
prevent this scenario we must find the right balance among overhead and
computation, because any application could run at the same time and it may
be greedy of resources like a video player.

The decoding matrix must have at least K rows in order to guarantee
that the code is decodable. It has been demonstrated [23] that log(K) is the
minimum degree that every row must have in order to achieve an overhead
equal to 0 (notice that this is not guaranteed – it occurs with a defined
probability). That being said, the minimum number of 1’s in the decoding
matrix must be greater than K log(K). Since the number of XOR depends
on the number of 1’s in every row, we could try to lessen the number of
XOR’s by keeping the matrix sparse.

However, in a pure Digital Fountain code, it is impossible to keep both
the overhead and the XOR operations very low. Some codes tried to solve
some of these problems reducing the efficiency of the random generation:
they lower the degree, at the cost of a growth of the overhead. Examples are
Tornado Codes and LT Codes [24].
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2.7.5 LT Fountain codes

In LT Fountain codes, the number of selected bits (degree) is random but
follows a precise law known as soliton distribution. Encoding is done in two
steps:

1. the degree is chosen (robust soliton distribution). With solition, the
degree is upper bounded to 40 (but this is very rare): in fact, most
rows have only one or two 1’s.

There is only one parameter that can be used to optimize a straight
LT code: the degree distribution function. Luby himself discussed [19]
the ideal soliton distribution defined by:

P (d = 1) =
1
n

P (d = k) =
1

k(k − 1)
(k = 2, 3, . . . , n)

(2.6)

This degree distribution theoretically minimizes the expected number
of redundant code words that will be sent before the decoding process
can be completed. Unfortunately the ideal soliton distribution does not
work well in practice and a modified distribution, the robust soliton
distribution [13], is usually substituted for it. The effect of the mod-
ification is, generally, to produce more packets of degree 1 and fewer
packets of degree greater than 1.

2. data bits are chosen (uniform distribution).

Decoding can be done with Gaussian elimination, however LT codes are
designed to be decoded by message passing: at every iteration there is at least
one degree one parity bit, and it is very improbable for the decoder to get
stuck. It may happen that some data bit is never selected to generate parity
bits: in this way the decoder is unable to decode a file with a reasonable
overhead (2%) because it is still missing a fraction of 5%-10% of the file.
In these cases the overhead of LT codes can be very high (100% in some
situations). Raptor codes applies a LDPC pre-code in order to to recover
those unselected data bits.

2.7.6 Raptor Fountain codes

Raptor codes are one of the first known classes of fountain codes with linear
time encoding and decoding. They were invented by Amin Shokrollahi in
2001 and were first published in 2004 as an extended abstract.

Raptor codes encode a given message consisting of a number of symbols,K,
into a potentially limitless sequence of encoding symbols such that knowledge
of any K or more encoding symbols allows the message to be recovered with
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some non-zero probability. The probability that the message can be recovered
increases with the number of symbols received above K becoming very close
to 1, once the number of received symbols is only very slightly larger than
K (there is a probability of 99.99% that the overhead is less than 2%). A
symbol can be any size, from a single bit to hundreds or thousands of bytes.

Raptor codes may be systematic or non-systematic. In the systematic
case, the symbols of the original message are included within the set of
encoding symbols. An example of a systematic Raptor code is the code
defined by the 3rd Generation Partnership Project for use in mobile cellular
wireless broadcast and multicast and also used by DVB-H standards for IP
datacast to handheld devices.

The encoding process

Raptor codes are formed by the concatenation of two codes:

1. a fixed rate LDPC code, usually with a fairly high rate, is applied as
a pre-code (outer code). This pre-code may itself be a concatenation
of multiple codes, for example in the code standardized by 3GPP a
high density parity check code derived from the binary Gray sequence
is concatenated with a simple regular low density parity check code.
Another possibility would be a concatenation of a Hamming code with
a low density parity check code.

2. the inner code takes the result of the pre-coding operation and generates
a sequence of encoding symbols. The inner code is a form of LT code.
Each encoding symbol is the XOR of a randomly chosen set of symbols
from the pre-code output. The number of symbols which are XOR’ed
together to form an output symbol is chosen randomly for each output
symbol according to a specific probability distribution. As we already
said, the distribution as well as the mechanism for generating random
numbers for sampling this distribution and for choosing the symbols to
be XOR’ed must be known to both sender and receiver.

In the case of systematic Raptor codes, the input to the pre-coding
stage is obtained by first applying the inverse of the encoding operation that
generates the first K output symbols to the source data. Thus, applying the
normal encoding operation to the resulting symbols causes the original source
symbols to be regenerated as the first K output symbols of the code. It is
necessary to ensure that the random processes which generate the first K
output symbols generate an operation which is invertible.

In the case of non-systematic Raptor codes, the source data to be encoded
is used as the input to the pre-coding stage.
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Figure 2.13: Systematic Raptor code: we apply a pre-code (outer code)
and a LT encoding (inner code).

The decoding process

The relationships between symbols defined by both the inner and outer codes
are considered as a single combined set of simultaneous equations which can
be solved by the usual means as in Digital Fountain, typically by Gaussian
elimination. Decoding succeeds if this operation recovers a sufficient number
of symbols, such that the outer code can recover the remaining symbols using
the decoding algorithm appropriate for that code.

Targets and performances

Raptor codes currently give the best approximation to a Digital Fountain. A
virtually limitless supply of packets can be generated on the fly after some
small initial preprocessing, with each packet taking only constant time to
produce. Decoding can be accomplished after receiving just a few percent
more than the minimum of K encoding packets (with high probability), and
requires space and time linear in the size of the original message. Moreover,
very efficient implementations are possible.

Overhead For any overhead H ≥ 0 and sufficiently large K, the message
M can be decoded after receiving only K +H packets with high probability.
Just notice that in case of systematic Raptor and if the erasure probability is
equal to zero, the required number of packets to decode is exactly equal to
K (first K output elements of the coding system coincide with the original
K elements).

Complexity Raptor codes reduces significantly the complexity in compari-
son with Random Digital Fountain codes. Because of weakened LT code, the
number of selected bits (degree) is bounded (e.g. max degree is 40 – although
a packet with a degree 40 is very rare). As a result, Raptor require O(1)
time to generate an encoding symbol and O(K) time to decode a message of
length K.
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BitFountain

3.1 Data exchange and connections

In the Internet, the fluxes of data are regulated by mainly two protocols:
TCP and UDP. Let’s briefly describe them.

3.1.1 TCP (Transmission Control Protocol)

TCP is a connection-oriented protocol, which means that upon communication
it requires handshaking to set up end-to-end connection. A connection can
be made from client to server, and from then on any data can be sent along
that connection. TCP has the following features:

• reliable - TCP manages message acknowledgment, retransmission and
timeout. Many attempts to reliably deliver the message are made. If
it gets lost along the way, the server will re-request the lost part. In
TCP, there’s either no missing data, or, in case of multiple timeouts,
the connection is dropped.

• ordered - if two messages are sent along a connection, one after the
other, the first message will reach the receiving application first. When
data packets arrive in the wrong order, the TCP layer holds the later
data until the earlier data can be rearranged and delivered to the
application.

• heavyweight thus slow - TCP requires three packets just to set up a
socket, before any actual data can be sent. It handles connections,
reliability and congestion control. It is a large transport protocol
designed on top of IP.

• limited by Windows OS. With the release of Service Pack 2 for Windows
XP, Microsoft has introduced a feature that limits concurrent TCP
connection attempts. Prior to SP2, there was no such limit. This
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feature is introduced in order to reduce the threat of computer worms
spreading too fast without control. With the limit, only a maximum of
10 connection attempts per second are allowed. This may have affects
applications, servers and P2P programs that attempt to open many
outbound connections at the same time. However, there is no limit in
other operating systems, like GNU/Linux or MacOSX.

• streaming - Data is read as a stream with nothing distinguishing where
one packet ends and another begins. Packets may be split or merged
into bigger or smaller data streams arbitrarily.

3.1.2 UDP (User Data Protocol)

UDP is a simpler message-based connectionless protocol. In connectionless
protocols, there is no effort made to setup a dedicated end-to-end connection.
Communication is achieved by transmitting information in one direction,
from source to destination without checking to see if the destination is still
there, or if it is prepared to receive the information. With UDP messages
(packets) cross the network in independent units. UDP has the following
features:

• unreliable - When a message is sent, it cannot be known if it will reach
its destination; it could get lost along the way. There is no concept of
acknowledgment, retransmission and timeout.

• not ordered - If two messages are sent to the same recipient, the order
in which they arrive cannot be predicted

• lightweight thus fast - There is no ordering of messages, no tracking
connections, etc. It is a small transport layer designed on top of IP.
Avoiding the overhead of checking whether every packet actually arrived
will lead to a lightweight implementation and thus makes UDP faster
and more efficient for applications that do not need guaranteed delivery.

• datagrams - Packets are sent individually and are guaranteed to be
whole if they arrive. Packets have definite bounds and no split or merge
into data streams may exist.

UDP and NAT

NAT traversal through UDP hole punching is a method for establishing
bidirectional UDP connections between Internet hosts in private networks
using NAT. It does not work with all types of NATs as their behavior is not
standardized. The same technique is sometimes extended to TCP connections,
albeit with much less success. The basic idea is to have each host behind
the NAT contact a third well-known server (usually a STUN server) in the
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public address space and then, once the NAT devices have established UDP
state information, to switch to direct communication hoping that the NAT
devices will keep the states despite the fact that packets are coming from
a different host. UDP hole punching work with a Symmetric NAT (also
known as bi-directional NAT, which tend to be found inside large corporate
networks) if and only if we use port prediction1. With this technique, we
predict the state of NAT when the endpoint tries to connect to us, and
viceversa [42].

The technique is widely used in P2P software (although not in BitTorrent)
and VoIP telephony. It is one of the methods used in Skype to bypass
firewalls and NAT devices. It can also be used to establish VPNs (using, e.g.,
OpenVPN).

3.1.3 Packet splitting

In TCP and UDP, data is not transmitted as a unique block. If it was so
and something went wrong, we would lose the whole information and the
sender would have to retransmit all from the beginning. For this reason,
the object to send is divided into pieces called packets. Before starting any
explanation we must define the meaning of the word packet. For us this
term may have two meanings according to the context. When we are talking
about data transmitted through the Internet, packet is an object composed
by various parts. One of them is the actual data, technically called payload.
But, we could use the word packet to refer to the actual parts in which
the file has been divided. Splitting files in packets goes to the advantage
of communications over the Internet. If some packets got lost the receiver
would ask only for a small amount of data. This saves both time and use of
bandwidth. TCP can identify what are the missing packets through ARQ: a
method used to detect errors

3.1.4 Digital Fountain blocks

Digital Fountain approach is based on a redundant encoding of data which
makes the protocol tolerant to packet losses and client heterogeneity: since
each received packet conveys information on a (potentially large) number
of source data packets, reception of specific packets is not necessary; rather,
it is the total number of received packets which determines the successful
completion of the data transfer. This approach has large implications on
the structure of the communication protocol: the need of feedback from the
receivers is drastically reduced, with significant advantages on the complexity

1With Symmetric NAT, the IP address of the well known server is different from that
of the endpoint, and therefore the NAT mapping the well known server sees is different
from the mapping that the endpoint would use to send packets through to the client.
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and scalability of the protocol and on its applications. Summarizing, using
Digital Fountain blocks we can identify two main advantages:

• there is not need to retransmit of a specific block.

• when a block is transmitted it is useful for many peers rather than one
single peer.

We are going to discuss them in the following paragraphs.

3.2 ARQ vs. FEC: a simple example

Suppose a scenario (see figure 3.1 on the next page) where we are interested
in a file split in 3 pieces (x, y, z). The P2P network is composed by 6 peers,
named A− F , and we are J . We will make these requests:

• we request block x to A and B.

• we request block y to C and D.

• we request block z to E and F .

Suppose that only 50% of the contacted peers will answer to our requests,
therefore:

• A and B will answer, so we have 2 copies of the block x (the first copy
is necessary, the second one is useless).

• C will answer, D does not. We have one copy of block y.

• E and F will not answer, we have no copies of block z. One more
request to get z block.

This solution exposes one main drawback (typically of ARQ paradigm): we
have an overhead due to request of a retransmission, while we have wasted
bandwidth to get 2 copies of block x.

Now let us see how the encoded symbols are built in a Digital Fountain
scheme. Each symbol must contain the result of the exclusive-or operation
between the actual pieces of the object. Following a Random Digital Fountain
scheme, P2P clients provides to deliver the XOR of the pieces that are picked
up from the file randomly. Obviously, a client must decode the symbols
received to regain the actual object. This means that with FEC some
problems related to computation may arise. With an ARQ scheme this did
not happen because the packets contained only source pieces of the file.

So, let’s review the example applying a Digital Fountain FEC mechanism:

• A will answer with M , which is x⊕ y.
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(a) Using ARQ. One more request is needed to retrieve z.

(b) Using FEC. We can decode the original file without additional
requests.

Figure 3.1: A comparison between ARQ and FEC in a P2P file transfer.
50% of the peers will answer to the requests made by J .
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Figure 3.2: We are dealing with BEC channels when we transfer information
on the Internet.

• B will answer with N , which is x⊕ y ⊕ z.

• C will answer with O, which is y ⊕ z.

Just note that also in this scenario only 50% of the peers have answered to
our request, but we can decode with elementary operations the 3 pieces and
thus decode the original file:

• x = N ⊕O.

• y = M ⊕N ⊕O.

• z = M ⊕N .

As we notice, there is no need of retransmission.

3.3 FEC: another example

Imagine that we have a transmitter and a receiver. The receiver wants to
retrieve a file, divided in K blocks. Also, the receiver does not want (or can
not) acknowledge the transmitter for every received packet. The channel
is also noisy: the receiver can receive correctly only a fraction (with 1 − p
probability, where p is the packet loss rate) of the transmitted packets (BEC,
as we said in chapter 2). Figure 3.2 depicts the situation.

In one simple approach, transmitter keeps transmitting every packet with
a Round Robin technique, which transmits every packet, in order, forever (see
figure 3.3 on the next page). The receiver listen to channel until it gets all
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Figure 3.3: Round Robin transmission: it transmits every packet sequen-
tially in a continuous loop.

the blocks of that file, and then disconnect. While listening, it counts every
packet that it receives. How many packets does the receiver must collect to
retrieve the original file?

We denote the total number of received block with X. We already talked
about overhead in chapter 2, however let’s emphasize its role in this situation.
As we said, we call overhead the number of additional received packets (no
matter if duplicated or not) that we have used to reassemble correctly the
file. We introduce the overhead percentage and we denote it with E. We
calculate the overhead percentage with:

E = 100
X

K
− 100

in this way:

• if X = K there is not overhead because we have used the minimum
number of blocks to reassemble the file.

• otherwise, as X can be only greater than K, we have an overhead and
E expresses it in percentage.

Now, we want to estimate X when using a Round Robin technique. Let’s
make some considerations:

• for every given block the probability of not being received is p, whereas
the probability of being received is equal to 1− p.

• in the first round we receive K(1− p) blocks (lost: Kp blocks).

• in the second round we receive Kp(1− p) of the previous lost blocks,
whereas Kp2 are lost again.

• in the third round we receive Kp2(1 − p) of the previous lost blocks,
whereas Kp3 are lost again.

• we repeat every round until Kp · p · p . . . becomes less than 1.
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Now, we estimate average number of rounds R in the following way:

KpR < 1

pR <
1
K

R < logp

(
1
K

) (3.1)

or, in a more general form:

R <
log
(

1
K

)
log(p)

(3.2)

In the Round Robin case we transmitK packets for each round, thusX = RK,
where R is the number of request-answer rounds and K is the number of
total packets that constitute the original piece of information. That being
said, Round Robin technique could lead to an high overhead, like E = 500%
when p = 99%. However, with erasure coding, we could achieve an overhead
percentage of 2% in the same conditions. We will illustrate this result in
figure 3.10 on page 87. Keep reading for further details.

3.4 Design

Looking for an average rate of erasures in the Internet, we would find a value
around 5% [5], but there are also peaks at 12%. So we must accept the idea
that the Internet is a very complicated system, variable in unpredictable
ways. In one second the packet loss can change dramatically because of a lot
of factors: cross-traffic, link quality, routing updates etc. There are lots of
books dealing with this problem, so this aspect must not be undervalued. An
erasure code code may pass over the problem of a continue request for missing
packets. As an example of erasure code, Digital Fountain can reassemble
the source objects only by received packets, without minding the losses. But
the fewer packets arrive, the more the connection must stay alive in order to
complete the data transfer.

The problem of losses during a transmission is independent from any
method of erasure and P2P can reduce it. In this kind of network when a
person requests a file, packets may come from different sources. Other people
who have parts of the same object may help the download. Even if some
sources are slow, the faster ones continue to send packets and the download
does not stop. So there is a reduction of losses at cost of increasing network
complexity to manage all the connections.

We design a new BitTorrent client, called BitFountain (BitTorrent +
Digital Fountain) which will be the first P2P to integrate the power of
BitTorrent and the adaptive characteristics of Digital Fountain (this kind of
codes do not have a fixed recovery capacity so they can adjust it using the loss



Design 65

probability estimated). Since we wanted an initial implementation which had
to be compliant with BitTorrent protocol, we must integrate Digital Fountain
scheme with little modifications to BitTorrent protocol. As a consequence, we
started developing BitFountain client by modifying a BitTorrent client. The
development will not be easy: we are going to deal with network programming,
distributed computing, threading, and so on.

In the following pages, we are going to describe its characteristics in detail.
Before explaining how we developed this client, we will illustrate the steps
we took in designing this client.

3.4.1 Using UDP instead of TCP

BitFountain takes advantage over normal BitTorrent client in using UDP
sockets:

• UDP sockets meets the characteristics of erasure channels (no ordering,
losses, unreliable, . . . ).

• we can open more connections to other peers at the same time.

• we can ask every (unchoked) peer for a random block: since in Digital
Fountain any block has the same importance as the others, there will
be no duplicate blocks: every received block is useful2.

• as a consequence of the previous statement, lost requests are unimpor-
tant and discarded. For example, if we need N blocks and we expect
that only a fraction 1

Z of our block requests will be answered, we request
for NZ random blocks to NZ peers. In this way we receive N random
blocks and we reassemble the original information.

• technically speaking, we put the client in end game mode from the
beginning, asking a random block to all unchoked peers.

• globally, we can increase the connectivity of the P2P network graph
using less resources than normal BitTorrent.

3.4.2 Digital Fountain applied to BitTorrent data levels

Since there are two BitTorrent data levels, pieces and blocks (see figure 3.4
on the next page), we studied how we could integrate Digital Fountain at
each level.

2In fact, a random block is useful if it is linear independent from other blocks already
received. So, as the received number of blocks increases, the probability that a new received
block is independent from the others decreases. However, the probability that a block is
dependent from the already received blocks is negligible when the number of the input
blocks K is elevated (because the total number of random blocks that can be generated is
very high).
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Figure 3.4: Data levels in BitTorrent. We could apply Digital Fountain to
piece or block, or both. At the moment, we are not considering
the tail piece.

DF applied to pieces

The main idea is to apply Digital Fountain encoding method to BitTorrent
pieces: the input file is already divided in pieces (so Digital Fountain are not
required to split it); for every request, we apply Digital Fountain encoding
method using chosen pieces as input (Digital Fountain will randomly select
which pieces to XOR). In this way we obtain a random piece, which has the
same size as BitTorrent pieces. Then, the random piece is sliced accordingly
to the length specified in the request, obtaining a random block, which is
sent to the requester. See figure 3.5 on the facing page for further details.

During the design of this solution, we realized that a major problem will
arise: this approach is applicable if we have all the pieces. Indeed, we can
just wait to have only the pieces selected to generate the random piece. We
have discarded this approach because the BitTorrent protocol prescribes that
a piece must be made available to other peers as soon as it is completed: this
will not occur with random pieces, because we are not able of advertising the
completed receiving of a random piece; let’s explain the reason. In order to
exchange random peers, every peer constructs and sends different random
pieces. As we said, a random piece could be created only if the peer has the
required input pieces; otherwise, the peer can only retransmit the random
piece that it has previously received – this is slightly useful for the other
peers.

The “missing piece” problem A major problem for BitTorrent swarms
is that when they get old and don’t have a permanent seed, they tend to
become non-recoverable. The problem is that if even a single piece winds up
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Figure 3.5: Digital Fountain applied to BitTorrent pieces.

not being on any current peers, then nobody can get a complete copy of the
whole file. Rarest first does a fairly good job of making pieces be as evenly
distributed as possible, and there’s an obvious theoretical limit in that if the
total amount of data all peers currently have is less than the complete size of
the file then there’s no way to do a complete recovery.

Let’s consider the case of three peers downloading a file, and they’re all
halfway done when one of them disappears. The remaining two have enough
bits between them, but is it possible for them to be guaranteed the ability
to reconstruct the file? With this approach we are eliminating the “missing
piece” problem: since all pieces have the same importance as the others, there
won’t be any critical piece which prevents the completion of the download.
BitTorrent developers, as Bram Cohen, are investigating a similar solution to
this problem using parity check XOR pieces [47].

DF applied to blocks

We have followed this approach during the development of BitFountain client.
This approach requires a minimum change in BitTorrent client, making
BitFountain inter operable with normal BitTorrent clients. We have followed
this approach during the development of this thesis.

Encoding

The Digital Fountain encoding is applied to blocks within a piece; in other
words, when a client receive a request for a block inside a piece (which the
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Figure 3.6: Digital Fountain applied to BitTorrent blocks.

client has for sure, this is a consequence of BitTorrent protocol), we select
random blocks within that piece, and then XOR them, obtaining a random
block. The encoding process is described in figure 3.6. The output block
will be sent in answer to a peer. During the encoding, the quotient between
offset and length will be used as a seed for the random generator number
inside the Digital Fountain encoder3. The quotient will generate a sort of
sequence number, as we will see in section 3.7 on page 88. In this way, encoder
and decoder both know which source packet (blocks) are used to produce
that kind of random block.

Decoding

A client must request other peers for a block belonging to a specified piece
index, but it does not care about length and offset. In fact, a client must
request random blocks until it can decode the original piece. It does not
matter which block a client receives: it is only important that a client receives
enough random blocks to decode. Any Fountain capable client must maintain
a decoding area for every piece. When a random block comes in, the client

3offset and length are specified in the request coming from the remote peer, as we
already said in chapter 1.
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tries to decode the piece using random blocks contained in the decoding area
for that piece:

• if the decoding is possible (we have collected enough random blocks),
we reassemble a BitTorrent piece. The client must hash check it to
prove its integrity.

• otherwise the client must enqueue a new request for a random block
belonging to that particular piece.

Just notice that the client will always decode a piece: in case of corrupted
random blocks, the piece will not pass the hash check (see chapter 4 for
security issues). We will discuss further implementation details in section 3.7.

DF applied to pieces and block

This is a combination of the two previous approaches and leads to two different
implementations:

• we generate a random piece by randomly XOR’ing all the pieces. Then,
we generate a random block by randomly XOR’ing blocks within the
same random piece.

• we create random blocks by randomly XOR’ing blocks from randomly
chosen pieces. Then, we generate a random block by randomly XOR’ing
random blocks generated on the previous step.

Because of the problem described in section 3.4.2 on page 66, we haven’t
focused on this approach.

3.4.3 A more efficient approach

If a client is Fountain capable and it is in end game mode during the whole
download, it asks to every unchoked peer a block: all the peers which answer
sending a random block will help the client to speed up the download of
the file, leading to a more efficiently and rapidly download process. Now,
we metaphorically compare this approach with normal BitTorrent approach:
what is more likely to succeed?

• ask 100 $ to one person (it is likely you do not get anything).

• ask 1$ to 100 people (it is likely you do get something).

You are certainly sure that the second scenario is more likely to succeed. So,
again, which is more likely to succeed?

• ask 100 blocks to one peer (it is likely you do not get anything).
BitTorrent asks for all the block in a piece to specified peers. Weak
peers slow down the download, as you have to wait for them.
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• ask 1 random block to 100 peers (it is likely you do get something).
BitFountain develops a light BitTorrent protocol (suitable for real time
video streaming) that asks random blocks to several peers in parallel,
an easy one-to-many approach (as we are using UDP). Every request is
very cheap, other peers may quick reply and then close the connection.
In the BitTorrent situation, this will leads to useless duplicates (hence
the CANCEL message in the end game mode). Using Digital Fountain
leads to a more efficient approach, because:

– there is no need to request for a specific block.

– every received block is a useful contribution (there are not dupli-
cates).

– Fountain capable clients can work in endgame mode, maximizing
the probability of receiving random blocks. There is not the need
to send CANCEL messages to other peers when a block is received
(in fact, there are not duplicates). CANCEL messages should be sent
only when a piece is reassembled successfully.

– every client does not worry about lost requests or lost blocks.

– it is just like asking for an upload speed sample to every peer:
weak peers are unimportant, as long as fast peers send enough
blocks.

– we do not have to modify the BitTorrent protocol heavily (in case
of Digital Fountain applied to BitTorrent blocks within the same
piece).

In this way, Digital Fountain enables fast parallel P2P.

3.5 BitFountain: an initial prototype

3.5.1 In search for a BitTorrent client

As we already said, we must start by editing a BitTorrent client. Therefore,
we have searched for a well-written, easy-maintenable BitTorrent client. We
have taken in account several clients, inspecting the source code and decide
pro and cons for every client analyzed.

CloudStorm library

A previous intern student at STMicroelectronics, Andrea Rota, developed
a Digital Fountain library called CloudStorm [32], written in Java. Since
we want to reuse its work, we initially searched for a Java-based BitTorrent
client.
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Figure 3.7: Azureus lines of code during time. Note that they have sur-
passed 600Klines of code.

Vuze (formerly Azureus) Vuze is a free and highly popular BitTorrent
client written in Java. Its initial release was published in June 2003. In
addition to BitTorrent-ting, Vuze allows users to view, publish and share
original DVD and HD quality video content. Content is presented through
channels and categories containing TV shows, music videos, movies, video
games and others.

There is not an official documentation for Vuze core (the developers
said that the code “is auto-explicative”). Therefore, we have studied its
code for a couple of months. The code is really a mess: in addition of lack
of documentation, the code is really disorganized: bad package splitting,
multiple class for one task, user-implementations of synchronization schemes
as semaphores, and so on. Vuze’s lines of code are very, very numerous
(600K, see figure 3.7). Developers keep adding features that we, frankly, don’t
require (such as HD videos); because of these problems, we abandoned the
idea of modifying Azureus to suit our needs.

BitLet BitLet, abbreviation for BitTorrent Applet, is a BitTorrent program
that enables the use of this file sharing protocol inside any Java-enabled
web browser, without the need of an external dedicated client program. The
software intends to make the use of BitTorrent very simple. To make a
download, the user first needs to obtain a valid torrent metafile URL. The
user then copies the URL to BitLet’s main page and clicks the download
link, initiating the downloading process.All the sharing is done by the user’s
computer, who is actively uploading and downloading as long as the program
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window is opened.
Bitlet is an interesting project: compliant to BitTorrent protocol, written

in Java and very simple. Unfortunately, it’s a closed source project. We have
tried to contact its developer, an Italian programmer, asking him to inspect
the source code for this thesis, but he refused to send us the source code. So,
we dropped the idea of modifying BitLet.

HPBTC and jBittorrentAPI HPBTC4 and jBittorrentAPI5 are two
promising open source BitTorrent clients. Because of their initial status, they
are very simple, and thus they were a good candidates for our modifications.
However, they are relatively old (their last release was in 2004) and they
don’t provide some core functions that we need (i.e. end game mode). At
this moment, we had finished to inspect all Java-based BitTorrent clients:
tired and hopeless, we switch to Mainline BitTorrent client.

Mainline BitTorrent is a peer-to-peer program developed by Bram Cohen
and BitTorrent, Inc. used for uploading and downloading files via the
BitTorrent protocol. BitTorrent was the first client written for the protocol.

BitTorrent is often nicknamed Mainline by developers denoting its official
origins. Prior to version 6.0, BitTorrent was written in Python, and was
free software. The source code for versions 4.x and 5.x are released under
the BitTorrent Open Source License, a modified version of the Jabber Open
Source License. Versions up to and including 3.4.2 were distributed under the
MIT license. Since version 6.0, the BitTorrent client is a rebranded version
of µTorrent. As a result, it is no longer open source, and this version of the
program is currently only available for Windows (although, like µTorrent,
the FAQ suggests to use it in Wine).

The client enables a range of features, including multiple parallel down-
loads. BitTorrent has several statistical, tabular and graphical views that
allow a person to see what events are happening in the background. A host of
views offer information on the number of peers and seeds which are present,
from how much data is being downloaded and to how much data is being
uploaded. It has an automatic recovery system which checks all data that
has been been handled after an improper shutdown, such as a power failure.
It also intermediates peering between itself, source trackers and other clients,
thereby yielding great distribution efficiencies. The client also enables users
to create and share torrent files.

4http://hpbtc.sourceforge.net
5http://bitext.sourceforge.net

http://hpbtc.sourceforge.net
http://bitext.sourceforge.net
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3.5.2 Mainline client for developers

After a small overview, we decided to carry on the project using BitTorrent
Mainline client6. It is certainly compliant with the BitTorrent protocol and
it have all of the features that we need. We have chosen release 4.4.0 for
our modifications. Again, there is not an official documentation, so we must
inspect and study the code for ourselves, trying to understand how the code
works. During the following paragraphs, we will give a description of the
structure and workings of the BitTorrent client.

Network connection handling A BitTorrent client needs to initiate con-
nections to the tracker and its peers. The communication between BitTorrent
clients and tracker is through HTTP and the duration of connection is rela-
tively short. When a BitTorrent client finishes downloading and before it is
closed by an end-user, it serves as a seeder and uses upload rate to decide
which peers to upload more instead.

Class RawServer (defined in RawServer.py) is one of the most impor-
tant classes. It multiplexes IOs (for both server and client sockets) and is
responsible for clearing timed-out sockets. It avoids using multiple threads
or multiple processes and thus is much more efficient. Class SingleSocket is
a simple wrapper class around the Python socket library and is also defined
in RawServer.py. It is used to handle data in the buffer and send data
through the socket. In BitTorrent client, other socket-related classes depend
on the services provided by both RawServer and SingleSocket to focus on
data transmissions and receptions without being bogged down to network
connection handling details.

With the services provided by RawServer, several classes implement
the BitTorrent protocol itself, handling peer-to-peer and peer-to-tracker
information exchange and rate limiting. These classes include:

Connection Defined in Connecter.py and is used to handle BitTorrent
protocol handshake between peers. Its member function data_came_in
is called each time the socket receives data from other peers. Function
_read_message is used to analyze each field in the received messages.
A Connection object is created for each peer and tracker.

Rerequester Defined in Rerequester.py and is used to handle BitTorrent
protocol handshake between peer and tracker, e.g., request for peer list,
updating its own status and handling peer list.

6STMicroelectronics is involved in the development of P2P-Next (we have talked about
that in chapter 1). Tribler is the main client of P2P-Next; Tribler is based on ABC, a
Python client which is based on BitTornado, which is, in turn, based on Mainline BitTorrent.
Because of this hierarchy, our work could be used in the development of Tribler, and thus
in P2P-Next.
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Upload Defined in Uploader.py and is responsible for uploading blocks to
peers.

SingleDownload Defined in Downloader.py and is responsible for down-
loading from peers. A SingleDownload object is also created for each
connecting peer. It maintains a list of all the active requests it sends
out, keeps track of download rate from peers and checks if remote peer
has any pieces local client is interested in. Its member functions respond
to different messages received from peers and then act accordingly.

Choker Defined in Choker.py and is used to decide which peers to choke
or unchoke. The tit-for-tat algorithm is implemented in this class.

Piece selection Though this is related to data transmissions, we list it
separately because it is the part upon which we make our changes. There
are several related classes here:

Bitfield Defined in bitfield.py. This is a helper class that provides easy
access to bit strings that identify which pieces a peer already has and
which pieces it needs to get.

PiecePicker Defined in PiecePicker.py. This implements the piece selec-
tion algorithms, e.g., the rarest first algorithm and the random first
algorithm. It also keeps record of which blocks in a specific piece the
client has and needs to request. In fact, we can modify the class such
that a BitTorrent client only requests the pieces that we need, for
example, the first half of the pieces for a file.

Storage handling The Storage class (defined in Storage.py) provides
lower-level functions to open, read and write files and pieces. StorageWrapper
class (defined in StorageWrapper.py) provides higher-level functions to read
and write BitTorrent pieces. For example, it is possible to read or write a piece
with specified index through StorageWrapper. Besides, StorageWrapper also
ensures that pieces are assembled in order when it writes the file even though
these pieces can be received out of order.

As we have said, Storage is a simple wrapper around Python’s file functions
for reading/writing at specified places. This is important because a file to
download is divided into several pieces and each piece is further divided into
slices as one unit of BitTorrent transmissions. These pieces/slices can be
received out of order, so it is important to provide some higher level functions
to read from or write to specific places. This is what Storage class provides:
it contains a read and write function. With the read function, you can specify
the position and the amount of data (in bytes) to read. With the write
function, you can specify the position to write to with the data (string). Here
a string can contain any characters and does not need to be ‘\0’ terminated.
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The StorageWrapper class may seem intimidating on first reading. It is.
To initiate an object of this class, we have to define a lot of dummy functions
to avoid some compilation and/or run-time errors.

new_request(piece#) function The new_request is called by other
classes (Downloader) to request new piece given by index. Actually it returns
the slice of the piece that is missing. For example, when we first call this
function manually, it should return offset 0 and the length of a slice. When
we call it the second time, it should return offset and length that both equal
the length of a slice. Each time we call this function we get different results.
The reason is that when we first call new_request for a piece, that piece is
not requested yet. So the function will automatically populate a list which
contains pairs of offset and length. The list is actually the specification for
the list of slices for this piece. It is saved in inactive_requests[index]
while inactive_requests is a list of lists. Then the function will remove and
return the first element of list inactive_requests[index]. Later whenever
it is called, it returns the slice with the minimum offset.

The piece_came_in(piece#, offset, slicedata) function When-
ever we get a slice from one of our peers (offset and the actual data), then
piece_came_in function will save the slice and do some book-keeping. Sup-
pose one piece contains two slices and we just get one slice, then if we call
do_I_have(piece#), then it should return False because we haven’t got all
the slices yet. Once we get all the slices for a certain piece, then do_I_have
should return True.

Downloading We describe the steps taken when downloading a file, and
give a brief description of what each Python file does. All modules and classes
mentioned are defined in the BitTorrent directory, or its BT1 subdirectory.

1. the user calls e.g. btdownloadheadless.py in the root directory to
start the download.

2. the run method reads the config file and parsers command-line parame-
ters.

3. creates a 20-byte BitTorrent peer ID by calling createPeerID for this
download session.

4. creates a RawServer object which creates a SocketHandler object and
schedules a task that checks for timeouts on the SocketHandler’s
connections. A task is a method that the RawServer will execute once
at a given time. Most tasks reschedule themselves, making themselves
periodic. See figure 3.8 on the next page (a).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: BitTorrent modules, classes and their interaction during down-
loading.
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5. attempts talk to any firewall/NAT box via Universal Plug ’n Play
(UPnP) to see if there is one.

6. calls RawServer to find and bind to a TCP listen port and to open this
port on the firewall via UPnP.

7. reads the torrent from disk if already present or downloads it via
HTTP, turning it into a metainfo Python dictionary, as described in
the BitTorrent protocol spec.

8. creates a download BTDownload1 object.

9. the constructor of the BTDownload1 object creates a PiecePicker ob-
ject. This latter object controls which piece to download next. It also
creates a Choker object that will execute the optimistic unchoking
policy. To this extent it schedules a task with the RawServer.

10. the client then calls BTDownload1.initFiles().

11. initFiles creates a Storage object, which maps all bytes in the files
in a torrent into a single linear address space. All indices used in the
BitTorrent protocol refer to this address space. So a piece of data
identified by an index is mapped to a particular offset in a particular
file by this object. Furthermore, it creates an empty file for each file in
the torrent, and handles file locking.

12. initFiles creates a StorageWrapper object. Its main task is to execute
the disk-allocation policy. Multiple policies are supported:

sparse uses sparse files; (i.e. the pieces are written on their correct
place in a file, but only the actual data written is allocated on the
file system).

pre-allocate fills any gaps in the file with zeros.

normal (the default policy) which writes data consecutively into the
files and moves the data in the right location in the background.

In addition, the StorageWrapper schedules a task with RawServer that
checks the integrity of any data already on disk in case of a restart. It
also schedules a task that automatically synchronizes the data to disk.

13. for a multi-file torrent, if enabled on the command-line, initFiles
creates a FileSelector object that enforces user-specified download
priorities on the files.

14. the integrity check scheduled by the StorageWrapper object is run.

15. the client calls BTDownload1.startEngine().
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16. startEngine() initializes the PiecePicker with information about
the pieces already on disk, if any. It creates Measure objects for
uploads and downloads. It creates a RateLimiter object. It also
creates a Downloader object that keeps track of the download side of
the BitTorrent download (e.g. which pieces have been received, which
pieces are available from peers, etc.). At the end, it creates a similar
object for the upload side: Upload. It creates a Connecter object. It
creates an Encoder object which schedules a task with RawServer to
send keep alives on all connections.

17. the client creates a Rerequester object which is the tracker client and
which uses a separate thread. See figure 3.8 on page 76 (b).

18. when the Rerequester has obtained some peer addresses from the
tracker it calls Encoder.start connections(). See figure 3.8 on
page 76 (c).

19. the Encoder calls Rawserver.start_connection() and creates a Con-
nection object for the created connection.

20. the Rawserver calls SocketHandler.start_connection().

21. the SocketHandler creates a Python socket and connects to the peer.
It then registers the socket with a poll object from Python’s select
module, and creates a SingleSocket object for the connection.

22. the client finally calls RawServer.listen_forever(), the object’s main-
loop.

23. the mainloop calls SocketHandler.do_poll() which calls Python se-
lect’s poll().

24. when data comes in on a connection, SocketHandler.handle_events()
method is called. This method reads the data from the socket and
reports it to the Encrypter. Connection for the connection via the
data_came_in() method. See figure 3.8 on page 76 (d).

25. the Encrypter.Connection calls the next function pointer to han-
dle the data. In the handshake phase of a BitTorrent connection
this will call methods in Encrypter.Connection to handle the hand-
shake. If the handshake is successful, the object calls the Connecter’s
connection_made() method. All subsequently received messages are
delivered to the Connecter via got_message().

26. Connecter.connection_made() method creates its own Connection
object which will handle all non-handshake BitTorrent messages. It
also registers the connection with the Downloader, the Upload and
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the Choker. (Note that there are 2 classes called Connection, in
the Encrypter.py module and in the Connecter.py module.). See
figure 3.8 on page 76 (e).

27. when messages come in, the Connecter will call the appropriate message
handlers in these latter three objects and the Connecter.Connection.
For example, when a PIECE message comes in, it calls the Downloader,
which, in turn, calls the StorageWrapper. See figure 3.8 on page 76 (f).

28. in order to send a message, Connecter.Connection calls Encrypter.-
Connection, which, in turn, calls the SingleSocket object, which, in
turn, writes the message to the Python socket.

29. when a new connection arrives on a listening socket, the SocketHandler
calls the Encoder which creates a Connection object for it, as with
outgoing connections.

BitTorrent class organization overview The root directory contains
the main Python scripts for:

• creating a torrent, via terminal (using btmakemetafile.py) or GUI
(using btmaketorrentgui.py).

• starting the tracker: bttrack.py.

• seeding and downloading a file, via a terminal: btdownloadheadless.py
or a GUI: btdownloadgui.py.

In the BitTorrent directory there is the source code, we give a little description
of the most important files:

CurrentRateMeasure.py Defines class for measuring data rates, used in
btdownload_bt1.py as argument to BT1.Connecter and BT1.Upload,
and by BT1.Rerequester for progress reports to the tracker.

HTTPHandler.py A HTTP server skeleton, used by the tracker track.py.

RateLimiter Defines class offering some rate limit calculations, used in
various classes, see download_bt1.py.

RateMeasure.py Defines a rate measure class, which is used by BT1.Down-
loaderFeedback class.

RawServer.py This module controls SocketHandler (the network I/O han-
dler), and executes tasks (i.e., a method executed at a particular point
in time) on behalf of the BitTorrent client.

SocketHandler.py Main network I/O handler and dispatcher, handles the
Python sockets.
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init.py Initialization code for the client, contains code for creating a peer
ID.

bencode.py Encoding/decoding functions for BitTorrent’s on-the-wire for-
mat.

bitfield.py Defines BitField class used in BitTorrent protocol to report
the available pieces to a peer at connection time.

download_bt1.py Main module for downloads via BitTorrent, defines BT1-
Download class.

launchmanycore.py Main module of parallel downloader, used by btlaunch-
many.py.

natpunch.py Module to open ports on NAT firewalls via UPnP.

parsedir.py Finds unique torrents in a directory tree, used by parallel
downloader launchmanycore.py and the tracker track.py (to see for
which torrents the tracker is allowed to track peers).

piecebuffer.py Defines PieceBuffer class used by BT1.Storage for read-
ing from files.

Choker.py Defines Choker class.

Connecter.py Handles incoming non-handshake messages via Connecter
and Connection classes.

Downloader.py Keeps track of download-side of a BitTorrent download.

DownloaderFeedback.py Keeps track of statistics and peer info (i.e., the
so-called “spew” data) used by higher layers to display information
about current peers.

Encrypter.py Defines the other Connection class that handles BitTorrent
handshake messages. Defines the Encoder class that does connection
setup of outgoing and handling of incoming connections and sends
BitTorrent keepalives on existing connections. See Connecter.py.

FileSelector.py Allows for assigning priorities to specific files in a multi-file
torrent download.

PiecePicker.py Defines PiecePicker class that selects the next piece to
download.

Rerequester.py Defines Rerequester class, the tracker client.

Statistics.py Defines Statistics class that allows all statistics kept in
the BitTorrent client to be accessed in one place.
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Storage.py Defines Storage class.

StorageWrapper.py Defines StorageWrapper class.

Uploader.py Defines Upload class.

track.py Main tracker module.

3.6 Thunderstorm: a fast Digital Fountain library
written in Python

Now that we have chosen a BitTorrent client, we must write a Digital Fountain
library to be called inside BitTorrent code.

We initially made an effort to integrate CloudStorm with Mainline client,
using a bridge like JPype7, which allows Python programs full access to Java
class libraries. This is achieved not through re-implementing Python, as
Jython/JPython has done, but rather through interfacing at the native level
in both virtual machines8. With this approach we experience a slowness in
encoding and decoding, perhaps because of bridging. Again, we have no
choice.

We start over and developed a new Digital Fountain library (named
ThunderStorm because of its speed) written in Python, which offers support
for Random Digital Fountain (like CloudStorm) and adds support for Raptor
Digital Fountain. As we will notice, ThunderStorm achieves a great speed
in encoding and decoding, keeping the implementation very simple and
straightforward. To obtain such speed, we use some libraries to speed up
the encoding process, like NumPy (it is the fundamental package needed for
scientific computing with Python and can also be used as an efficient multi-
dimensional container of generic data) and Psyco (it is a Python extension
module which can massively speed up the execution of any Python code).
ThunderStorm is also heavily tested: in the following graph you will see that
we have tested it for at least 500× 3 iterations. ThunderStorm is built with
evolution in mind: it easy for developers to add a new type of encoding and
decoding scheme. Due to all these motivations, ThunderStorm is faster, much
more reliable and extensible than CloudStorm, and it is the only Digital
Fountain library which includes the cutting edge technology of Fountain
codes, especially Raptor codes.

Thunderstorm offers two way to generate random blocks (recall: chap-
ter 2):

• using Random Digital Fountain. In this case, the number of input
blocks which participate in XOR are 50% of the input blocks.

7http://jpype.sourceforge.net
8We can’t use Jython because of C-modules used by BitTorrent, like twisted.

http://jpype.sourceforge.net
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• using Raptor Digital Fountain. In this case, the maximum number of
input blocks which are XOR’ed together is 40.

As we said, the input blocks to be XOR’ed together is random; the choice
of which data block to XOR is made by numbers generated by the random
number generator. To synchronize the random number generator for the
transmitter and the receiver, every block is paired with a seed for the random
number generator. In this way, the seed tunes the random number generator
to produce the same bitlist on both sides. As a consequence, we can simply
transfer the block with its seed instead of transferring the block with its
bitlist (this will lead to a save of bandwidth). Now, we said that Fountain
codes must XOR randomly chosen blocks:

1 def create_random_block ( b i t l i s t , p i e c e ) :
2 a s s e r t l en ( p i e c e ) % len ( b i t l i s t ) == 0
3 b l o c k s i z e = len ( p i e c e )/ l en ( b i t l i s t )
4 random_block = ma. z e ro s ( b l o ck s i z e , numpy . u int8 )
5 for i in xrange ( l en ( b i t l i s t ) ) :
6 i f b i t l i s t [ i ] == 1 :
7 block = ma. f r omst r ing (
8 p i e c e [ i ∗ b l o c k s i z e : i ∗ b l o c k s i z e+b l o c k s i z e ]
9 ,numpy . u int8 )

10 random_block ^= block
11 return random_block

As you can see, this method must receive as input a bitlist: in this way, we
can provide either a LT bitlist or a random (50% of ones in bitlist) bitlist.
As a consequence, we can reuse this snippet of code when using, respectively,
Raptor or Random Fountain Codes. Regarding decoding, ThunderStorm
implements an equation system solver using Gaussian elimination to solve
equation systems for both Random Digital Fountain and Raptor Digital
Fountain. The implementation of the equation system solver is obviously
reused for both of the two cases.

3.6.1 Random codes in ThunderStorm

Now, let’s see a simple encoding and decoding example:

1 for m in xrange (ITERATIONS) :
2 p i e c e = os . urandom( p i e c e s i z e )
3 t ransmit ted = [ ]
4 decoded = False
5 txsn = 0
6 used = 0
7 Y = RandomDF(K,BLOCKSIZE)
8

9 while decoded == False :
10 txsn += 1
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11 ####################################################
12 # avoid encoding / decoding i f packe t i s l o s t ########
13 i f random . rand int (0 , 99 ) < PLOSS−1:
14 txsn += 1
15 continue
16 ####################################################
17

18 seed = random . ge t r andb i t s (32)
19 rb lock = create_random_block (
20 r and50 l i s t ( seed , K)
21 , p i e c e ) . t o s t r i n g ( )
22 t ransmit ted . append ( ( seed , rb lock ) )
23 txsn += 1
24 ####################################################
25 # packe t i s be ing t ransmi t t ed on the channel . . . #
26 ####################################################
27 used += 1
28 rxsn , b lock = transmit ted . pop ( )
29

30 i f Y. use_random_block ( rxsn , b lock ) == True :
31 p i e cedec = Y. r e t r i e v eda t a ( )
32 i f sha . new( p i e c e ) . hexd ige s t ( )
33 != sha . new( p i e c edec ) . hexd ige s t ( ) :
34 raise Exception
35 decoded = True
36 print ’Random DF
37 encoding/decoding process finished’

In this little example, we generate a transmitter and a receiver. The trans-
mitter generates a random piece of data that it want to transmit to the
receiver. In order to accomplish its need, the transmitter uses Random Digi-
tal Fountain. As a consequence, it must generate a seed and a random block
(which is a Random Digital Fountain block obtained by encoding the original
piece with the specified bitlist, obtained by inspecting the seed). As we saw
from the previous snippet, the encoder takes the seed (bitlist) and then XOR
only the subpieces (blocks) which have the corresponding bit raised in the
bitlist. After the generation of one block, the transmitter puts the seed and
the random block in the channel. We have also modeled a channel that can
randomly loose some blocks with a specified loss percentage: if the block
is lost, we avoid encoding and decoding times. If the block is received, the
receiver tries to reassemble the original piece. If the received blocks are not
enough, the transmission/receiving routine will start again: in this way, the
receiver keeps accumulating random blocks. At one point, the receiver can
decode and reassemble the original piece: after that, we check the integrity of
the original piece by matching the two hashes. The transfer is now finished
and transmitter and receiver can now disconnect.
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3.6.2 Raptor codes in ThunderStorm

The equivalent Raptor encoding and decoding example is pretty straightfor-
ward:

1 for m in xrange (ITERATIONS) :
2 p i e c e = os . urandom( p i e c e s i z e )
3 t ransmit ted = [ ]
4 decoded = False
5 txsn = 0
6 used = 0
7 X = Raptor (K,BLOCKSIZE)
8 Y = Raptor (K,BLOCKSIZE)
9

10 while decoded == False :
11 ####################################################
12 # avoid encoding / decoding i f packe t i s l o s t ########
13 i f random . rand int (0 , 99 ) < PLOSS−1:
14 txsn += 1
15 continue
16 ####################################################
17 rb lock = X. encode (
18 txsn ,
19 p i e c e ) . t o s t r i n g ( )
20 t ransmit ted . append ( ( txsn , rb lock ) )
21 txsn += 1
22 ####################################################
23 # packe t i s be ing t ransmi t t ed on the channel . . . #
24 ####################################################
25 used += 1
26 rxsn , b lock = transmit ted . pop ( )
27

28 i f Y. decode ( rxsn , b lock ) == True :
29 p i e cedec = Y. r e t r i e v eda t a ( )
30 i f sha . new( p i e c e ) . hexd ige s t ( )
31 != sha . new( p i e c edec ) . hexd ige s t ( ) :
32 raise Exception
33 decoded = True
34 print ’Raptor DF
35 encoding/decoding process finished’

3.6.3 Round Robin example implementation

For the sake of completeness, we want to show the snippet of the code to
handle Round Robin transmission:

1 for p i e c e s i z e in PIECESIZE :
2 p i e c e = os . urandom( p i e c e s i z e )
3 b locks = [ ]
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4 for i in xrange (0 , l en ( p i e c e ) , BLOCKSIZE) :
5 b locks . append ( p i e c e [ i : i+BLOCKSIZE ] )
6 mean = [ ]
7 for m in xrange (ITERATIONS) :
8 r e c e i v ed = False
9 t ransmit ted = [ ]

10 rece ivedC = {}
11 i = 0
12 txsn = 0
13 used = 0
14

15 while not r e c e i v ed :
16 t ransmit ted . append ( b locks [ i ] )
17 txsn += 1
18 i f random . rand int (0 , 99 ) < PLOSS−1:
19 t ransmit ted . pop ( )
20 else :
21 used += 1
22 rece ivedC [ i ] = transmit ted . pop ( )
23 i f l en ( rece ivedC ) == len ( b locks ) :
24 r e c e i v ed = True
25 print ’Round Robin
26 transmission/receiving
27 process finished’

As we already said, in this approach we keep sending the blocks within the
piece in continuous sequence on the channel: because of losses, the blocks may
not arrive at destination. In this way, the receiver keeps accumulating “normal”
blocks, which may be duplicates and thus useless (suppose a scenario where
a receiver misses only the last block of a piece and for a series of coincidences
it does not receive it because of losses, but it keeps receiving the first block:
this block of information is duplicate, and thus useless).

We will illustrate the performance of the previous snippets in the following
paragraphs.

3.6.4 Benchmarking

In the following pages, you can see encoding and decoding time, for both
Random Digital Fountain and Raptor Digital Fountain. We have benchmarked
them with block sizes and piece sizes equal to BitTorrent’s sizes to achieve a
high likelihood.

As you can see from figure 3.9 on the next page and figure 3.10 on page 87,
Raptor Digital Fountain is much more faster during encoding and decoding
than Random Digital Fountain. We have illustrated the reason in chapter 2
(recall: less blocks to XOR.). However, when the blocks are relatively few
(when the number of blocks is less than 64), Random Digital Fountain take
less time than Raptor Digital Fountain: we could think that using Random
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(a) Encoding time (notice the exponential
growth of Random).

(b) Encoding time (semilogy).

(c) Encoding time (log) (notable perfor-
mances for Random with K < 64 and
Raptor with K ≥ 64).

(d) Decoding time.

(e) Decoding time (semilogy). (f) Decoding time (log).

Figure 3.9: ThunderStorm benchmarking: Random & Raptor encoding and
decoding time. Lower time is better.
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(a) Loss probability p = 0. Raptor and
Round Robin have overhead equal to
0.

(b) Loss probability p = 25%. Notice
the growing overhead of Round Robin
method.

(c) Loss probability p = 50%. Raptor has
less overhead than Random.

(d) Loss probability p = 50%. Notice
the growing overhead of Round Robin
method.

(e) Loss probability p = 99%. Raptor is
still better than Random. Overhead is
minimum when K = 256.

(f) Loss probability p = 99%. Notice the
growth of Round Robin: from equation
(3.2), the number of rounds needed to
accomplish a transmission is approxi-
mately 552. This will result in a terri-
ble delay.

Figure 3.10: ThunderStorm benchmarking: overhead with Round Robin,
Random and Raptor. Lower overhead is better.
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in this case would be better than using Raptor. That’s not true. We have
graphed the overhead at varying loss percentage. Looking at those graphs,
we can see that Raptor achieve a lower overhead than Random: when the
loss percentage is zero, Raptor’s overhead is zero (Raptor is systematic);
Random’s overhead, instead, is nonzero even if the loss probability is zero.
In an epoch of quad core, having a less overhead is preferable than a little
difference (a maximum of 0.1 seconds) of CPU usage; having less overhead
will lead in lesser bandwidth usage, the real missing resource of our days. So,
again, Raptor is better than Random.

There is only one case when we are required to use Random Digital
Fountain: if the BitTorrent piece size is 32 · 1024, we have 2 blocks. Raptor
Digital Fountain does not work with less than 4 blocks: so, if piece size is
32768, we must use Random Digital Fountain, as it is the only choice.

3.7 BitFountain: modifications to Mainline client

In the following paragraphs we will briefly describe our modifications to
BitTorrent client that make the essence of BitFountain client. Please see the
source code for implementation details.

3.7.1 Uploader

As the upload function only access StorageWrapper at the specified index,
at offset begin and reads a total of length bytes, we have to do nothing
here. This function is transparent to Digital Fountain.

3.7.2 Downloader

The Downloader reads every PIECE message, extracts the block and send it to
the StorageWrapper. In return, the StorageWrapper notifies the Downloader
if the piece is completed or not:

• (normal case) if the piece is not completed, enqueue more standard
request (with begin and length as the BitTorrent protocol prescribes).

• (random case) if the piece is not completed but we have completed all
the standard request, we must make additional request: they are random
requests. In fact, the peer fill the begin of these requests with an offset
that is over the piece size (e.g. if the piece size is 4× 10242, the offset
of the first random request will be 4× 10242, then 4× 10242 + 16384,
then 4× 10242 + 32768 . . . and so on). In this way, the seed (sequence
number) of the request will keep counting incrementally.

• (normal case) if the piece is completed, advertise other peers with HAVE
message.
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We show the StorageWrapper decoding area that we are going to describe in
the following paragraphs:

1 def DF_piece_came_in (
2 s e l f , index , begin , p iece , source = None ) :
3 [ . . . ]
4 i f s e l f . _piece len ( index ) == s e l f . _piece len ( 0 ) :
5 i f s e l f . _piece len (0 ) == 32768 :
6 try :
7 x = dfwrapper [ index ]
8 except KeyError :
9 x = RandomDF( i n t ( s e l f . _piece len (0 )

10 / s e l f . c on f i g [ ’download_slice_size’ ] )
11 , s e l f . c on f i g [ ’download_slice_size’ ] )
12 dfwrapper [ index ] = x
13 readyToDecode = x . use_random_block (
14 i n t ( begin / l en ( p i e c e ) )
15 , p i e c e )
16 else :
17 try :
18 x = dfwrapper [ index ]
19 except KeyError :
20 x = Raptor ( i n t ( s e l f . _piece len (0 )
21 / s e l f . c on f i g [ ’download_slice_size’ ] )
22 , s e l f . c on f i g [ ’download_slice_size’ ] )
23 dfwrapper [ index ] = x
24 readyToDecode = x . decode (
25 i n t ( begin / l en ( p i e c e ) )
26 , p i e c e )
27 [ . . . ]
28 i f readyToDecode == True :
29 print ’Decoding DF piece %d’ %(index )
30 s e l f . s t o rage . wr i t e ( s e l f . p l a c e s [ index ]
31 ∗ s e l f . p i ece_s ize , x . r e t r i e v eda t a ( ) )
32 del dfwrapper [ index ]
33 del x
34 del s e l f . s ta t_d i r ty [ index ]
35 i f sha ( s e l f . s t o rage . read ( s e l f . p i e c e_s i z e
36 ∗ s e l f . p l a c e s [ index ] ,
37 s e l f . _piece len ( index ) ) ) . d i g e s t ( )
38 == s e l f . hashes [ index ] :
39 print ’DF Piece %d
40 validated OK’ % index
41 print ’#’ ∗ 50
42 [ . . . ]
43 else :
44 print ’WARNING:
45 DF Piece %d validated KO.
46 \nRe-downloading...’ % index
47 print ’#’ ∗ 50
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48 s e l f . data_flunked (
49 s e l f . _piece len ( index ) ,
50 index )
51 s e l f . i na c t i v e_reque s t s [ index ] = 1
52 s e l f . amount_inactive +=
53 s e l f . _piece len ( index )
54 s e l f . stat_numflunked += 1
55 [ . . . ]
56 return False
57 return True
58 e l i f not s e l f . i na c t i v e_reque s t s [ index ]
59 and not s e l f . numactive [ index ] :
60 return ’request more’
61 else :
62 return s e l f . piece_came_in (
63 index ,
64 begin ,
65 piece ,
66 source )

As you can see, we use the correct decoding method (Random or Raptor) by
retrieving the piece size: if the piece size is more than 32k, we use Raptor,
otherwise we use Random. If we collected enough random blocks, we can
decode the piece than hash check it to test its integrity. If we can not decode,
we must request for additional blocks, and we have to distinguish if we are
enqueuing standard request or additional requests:

1 def new_request ( s e l f , index ) :
2 # re turns ( begin , l e n g t h )
3 i f s e l f . i na c t i v e_reque s t s [ index ] == 1 :
4 s e l f . _make_inactive ( index )
5 s e l f . numactive [ index ] += 1
6 s e l f . s t a t_act ive [ index ] = 1
7 i f index not in s e l f . s ta t_d i r ty :
8 s e l f . stat_new [ index ] = 1
9 r s = s e l f . i na c t i v e_reque s t s [ index ]

10 r = min ( r s )
11 r s . remove ( r )
12 s e l f . amount_inactive −= r [ 1 ]
13 #i f s e l f . amount_inactive == 0:
14 # s e l f . endgame = True
15 return r
16

17 def new_request_DF( s e l f , index ) :
18 r eque s t_s i z e =
19 s e l f . c on f i g [ ’download_slice_size’ ]
20 try :
21 begin = indexptr [ index ]
22 begin += reques t_s i z e
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23 indexptr [ index ] = begin
24 except KeyError :
25 indexptr [ index ] = s e l f . p i e c e_s i z e
26 begin = s e l f . p i e c e_s i z e
27 s e l f . numactive [ index ] += 1
28 s e l f . s t a t_act ive [ index ] = 1
29 i f index not in s e l f . s ta t_d i r ty :
30 s e l f . stat_new [ index ] = 1
31 return ( begin , r eque s t_s i z e )
32

33 def _request_DF( s e l f , i n t e r e s t ) :
34 begin , l ength = s e l f . downloader . s t o rage .
35 new_request_DF( i n t e r e s t )
36 s e l f . a c t i ve_reques t s . append ( ( i n t e r e s t , begin , l ength ) )
37 s e l f . connect ion . send_request ( i n t e r e s t , begin , l ength )

Standard requests are those that comes with BitTorrent: we split the piece in
blocks of the same length, and then we request until begin = piecesize−
length. For DF requests, instead, we made requests characterized by having
a begin that is greater or equal than piecesize. As we already said, in a
Fountain capable client, begin

length is used as a seed for the Fountain encoder or
decoder.

1 def get_DF_piece ( s e l f , index , begin , l ength ) :
2 [ . . . ]
3 p i e c e = s e l f . s t o rage . read (
4 s e l f . p i e c e_s i z e ∗ s e l f . p l a c e s [ index ] ,
5 s e l f . p i e c e_s i z e )
6 i f s e l f . _piece len (0 ) == 32768 :
7 block = create_random_block (
8 r and50 l i s t ( i n t ( begin / l ength ) ,
9 i n t ( s e l f . _piece len (0)/

10 s e l f . c on f i g [ ’download_slice_size’ ] ) ) ,
11 p i e c e ) . t o s t r i n g ( )
12 print ’\tsending randomDF block’
13 else :
14 try :
15 x = dfwrapper_tx [ index ]
16 except KeyError :
17 x = Raptor ( i n t ( s e l f . _piece len (0)/
18 s e l f . c on f i g [ ’download_slice_size’ ] ) ,
19 s e l f . c on f i g [ ’download_slice_size’ ] )
20 dfwrapper_tx [ index ] = x
21 block = x . encode ( i n t ( begin / l ength )
22 , p i e c e ) . t o s t r i n g ( )
23 print ’\tsending raptorDF block’
24 return block
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3.7.3 Storage

Reading a block to upload When the storage is requested to read a
piece, it is called by the Uploader, because some peer wants a block. First
of all, we must read the piece entirely. Then we choose between Random
Digital Fountain and Raptor, remember the remarks made before:

• if the piece size is 32768, we must use Random Digital Fountain. Encode
the random block by randomly XOR’ing all the blocks within the piece,
using begin

length as seed for the random number generator.

• otherwise, we use Raptor Digital Fountain because they can ensure
better performances than Random. Encode the random block by
randomly XOR’ing all the blocks within the piece, using begin

length as seed
for the random number generator.

Once finished, send the random block to the peer.

Writing a block We designed our client to maintain a decoding area for
every piece (see figure 3.11 on the next page): when a random block comes
in, the client tries to decode that piece, using begin

length as seed for the random
number generator:

• if the decode phase does not have success, because more random blocks
are needed, the client will notify the Downloader to enqueue more
special requests for that piece.

• if the decode phase have success, the client continue with normal
BitTorrent operations: hash checking, etc.

3.7.4 Interoperability with “normal” clients

BitFountain is also interoperable with “normal” (e.g. not Digital Fountain
capable) clients. To discriminate normal peers, we had two choices:

• send a BEP (BitTorrent Enhancement Proposal) to BitTorrent Com-
munity, asking to reserve a bit in the handshake message. This process
is slow and relatively useless.

• recognizing the capabilities of each client by inspecting its peer ID:

– if the client peer ID is BitFountain:

∗ we answer to a block request by ignoring which specific data
block is requested and we send out random blocks.
∗ we request for random blocks to other peers.
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Figure 3.11: Piece decoding: if we have collected enough block, decode the
piece. Otherwise, enqueue more requests. Every piece has a
decoding area like the one outlined here.

– if the client peer ID is not BitFountain:

∗ we answer to a block request in the normal way, slicing a
piece of that index at the requested begin and reading a
total amount of length data.

∗ we request for normal blocks to other peers.

Obviously, we have chosen the second way. Generate a new peer ID is
easy:

1 def make_id ( ) :
2 myid = ’BF’ +
3 ve r s i on . s p l i t ( ) [ 0 ]
4 . r e p l a c e (’.’ , ’-’ )
5 myid = myid +
6 (’-’ ∗ (8− l en (myid ) ) )
7 +sha ( repr ( time ())+ ’ ’ +
8 s t r ( ge tp id ( ) ) ) . d i g e s t ( ) [ − 6 : ] . encode (’hex’ )
9 print ’Client ID: ’ + s t r (myid )

10 return myid

Testing if a client is Fountain capable is straightforward too:

1 i f ’BF2-0-0’ in s e l f . connect ion . id :
2 i n s e r t = s e l f . downloader . s t o rage .
3 DF_piece_came_in ( index ,
4 begin ,
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5 piece , s e l f . guard )
6 i f i n s e r t == ’request more’ :
7 s e l f . _request_DF( index )
8 else :
9 i n s e r t = s e l f . downloader . s t o rage .

10 piece_came_in ( index ,
11 begin ,
12 piece , s e l f . guard )

As you can see, in Downloader we call two different methods if the
sender is Fountain capable or not. The same applies for the Uploader.
Notice that BitFountain client can dummy-encode pieces downloaded
from normal BitTorrent client in order to use such blocks:

– if we are using Random Fountain: “normal” data block can be
injected in decoding process by simply associating them with a
bitlist with one single 1 (corresponding to the single received
block).

– if we are using Raptor Fountain: “normal” data block can be
injected in decoding process by simply associating them with a
proper seed (remember: first K output blocks of the coding system
coincide with the original K blocks).

In this way, every received block from “normal” clients is useful for the
decoding process.
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Security issues

4.1 BitTorrent security

Many peer-to-peer networks are under constant attack by people with a
variety of motives. Examples include:

• poisoning attacks (e.g. providing files whose contents are different from
the description).

• polluting attacks (e.g. inserting bad chunks/packets into an otherwise
valid file on the network).

• leechers (users or software that make use of the network without con-
tributing resources to it).

• insertion of viruses to carried data (e.g. downloaded or carried files
may be infected with viruses or other malware).

• malware in the peer-to-peer network software itself (e.g. distributed
software may contain spyware).

• denial of service attacks (attacks that may make the network run very
slowly or break completely).

• filtering (network operators may attempt to prevent peer-to-peer net-
work data from being carried).

• identity attacks (e.g. tracking down the users of the network and
harassing or legally attacking them).

• spamming (e.g. sending unsolicited information across the network).
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4.1.1 Anonymity

BitTorrent does not offer its users anonymity. It is possible to obtain the IP
addresses of all current, and possibly previous, participants in a swarm from
the tracker. An attacker obtaining these IP addresses can perform an attack
on clients.

4.1.2 Integrity

It is also practically impossible to send garbled data to another client. Upon
receipt of data, if the index, begin and the length of the data received do
not fit those of the recipient’s requests, then the bytes are discarded and will
not be saved anywhere in the recipient’s system. To prevent data poisoning
and bad peers from sending garbled data to other downloaders, SHA1 hash
check is done whenever the download of a piece is completed. We enumerate
the steps during a typical data transfer:

1. the uploader packs the data to be sent in the PIECE format.

2. as this data streams into the connection of the downloader, the down-
loader reads the first 4 bytes to determine the number of bytes that
come right after. Since this is a PIECE message, these 4 bytes would
give a value of 9 + block length.

3. separating the incoming message into appropriate parts, the downloader
gets the index, offset and actual block data. The downloader then
compares the index, offset and block data length to those of the
requests sent. If any of the 3 fields do not match, these bytes are
discarded. If they match, the block is saved within the correct piece.

4. if all blocks within a piece are retrieved, the SHA1 hash of the com-
plete piece is compared with the 20-byte hash recorded in the torrent
metadata file:

• if the SHA1 hash check fails, then the IP address of the sender is
banned all blocks within the particular piece are discarded1.

• otherwise, the piece is saved into the receiver’s file storage. The
downloader’s bitfield is updated and the downloader sends out to
all peers a HAVE message containing the index of this piece.

It is assumed that it is unlikely for a poisoned piece to pass a SHA1 hash
check. In fact, we can assume it is very difficult to obtain a SHA1 hash

1Each client maintains a ban list. A ban list contains the IP addresses of peers who
have sent bad blocks to the client. Any peer that is in a client ban list will not be allowed
to connect that client at all. This list is semi-permanent, which means that is maintained
for the period of time that the client is running. When the BitTorrent client application
exits, this list is lost.
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collision, thus bad peers can not corrupt pieces and send them. In other
words, there is no known way for bad peers to send fakes in the BitTorrent
network, unless the file itself is a fake.

Discarding blocks

As we already said, the minimum transfer unit in BitTorrent is a 16k blocks,
which is much smaller than full size piece. Pieces are what’s referred to
in HAVE messages and what the peers have hashes of. This causes a few
problems:

• peers have no way of knowing which block was bad if a piece they
download fails hash check, and if they’re streaming data they can’t
display it until a full piece is downloaded for hash verification purposes.

• there is a huge waste of bandwidth when a piece does not pass hash
check: in fact, the peer must discard all the blocks (even all the correct
ones) and then re-download all the blocks within the piece. It is better
to discard only bad blocks, and re-download only them: this will lead
to a save of bandwidth.

The problem of the current situation is clear: we have to validate blocks,
distinguishing between good and bad blocks.

A simple extension, proposed by BitTorrent team [48], could be an initial
approach to validation. In addition to the piece hashes, the .torrent file
includes another set of hashes, which also includes one hash per piece, but
instead of a hash of the piece as a whole it is the hash of all the 16k blocks of
that piece. Let’s estimate the total amount of additional data to store. For
example, a torrent file consists in 755 pieces of 2MB (thus total download
size is 1.47GB). Every piece is made up by 128 blocks. Therefore, the torrent
file has to contain a total of 96640 hashes (2MB): as we can see, this solution
is suitable for normal BitTorrent.

However, this solution is inapplicable with Digital Fountain (either applied
to blocks or pieces) and we will illustrate the reason. As a consequence, we
propose another way to validate blocks. Keep reading for further details.

4.2 BitFountain security

4.2.1 Attack model

We assume that an object is transmitted from a sender to a remote receiver
over an unsecured channel. We further assume that there is an intelligent
and powerful attacker in this channel. This attacker has the full control of
the unsecured channel and can potentially:

• intercept all the packets sent by the sender.
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• delay, reorder and delete these packets.

• send chosen, forged packets to the receiver.

The goal of the attacker can be to corrupt as many transmitted objects as
possible, in order to mount a Denial of Service (DoS) attack. This attack is
trivial to launch since the attacker can corrupt all packets sent to the receiver
(in practice corrupting a subset of them is sufficient). If a receiver does not
know how to discard them, they are used in place of authentic ones. In
the end, the receiver reassemble a file which is not the same as the encoded
one because of corruption propagation. In fact, in order to recover from
packet erasures, the erasure code decoder rebuilds the missing data with the
received data and parity symbols, in a recursive way. Let us now consider
the following constraint equation:

S0 ⊕ S1 ⊕ S2 ⊕ S3 = 0

We assume that the value s1; s2; s3 of the symbols S1;S2;S3 have been received
but not s0. Then:

s0 = s1 ⊕ s2 ⊕ s3
Assume that an attack has been launched and that the received value of
symbol S3 is the corrupted value s′3, such that: s′3 = s3 ⊕ ε. The decoded
value of symbol S0 will be:

s1 ⊕ s2 ⊕ s′3 = s1 ⊕ s2 ⊕ s3 ⊕ ε = s1 ⊕ ε

which has inherited the corruption of S3. Therefore, if a corrupted symbol is
used in a decoding operation, the decoded symbol inherits from the corruption.
Furthermore, each newly decoded symbol can be used to decode other symbols
recursively, so an avalanche of corruptions can happen during decoding. We
call this the corruption propagation phenomenon. This will happen either
using Random or Raptor.

Even if we primarily consider intelligent attackers, the attack might also
be non-intentional. For instance, it might be caused by transmission errors
that have not been detected and/or corrected by the physical layer erasure
codes/CRC. Even though it is usually considered that these corruptions are
rather infrequent, they are not totally impossible, especially in some harsh
wireless environments. In our work, we consider those non-intentional attacks
are special cases of the attack model, and the challenge here is to detect the
corruption, even when a very small number of bytes are corrupted in the
object.

4.2.2 DF applied to BT pieces

We are going to describe the corruption propagation phenomenon when using
Digital Fountain applied to pieces. An attacker, A, injects Digital Fountain
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random pieces into the network, claiming to be a seeder with the random
piece that another peer needs to get. When another peer asks A for a random
piece, A sends back a corrupted piece M ′ instead of M . At some point,
when the receiver has collected enough random pieces, it can decode the
random piece received: at this point it will realize that there is something
wrong. In fact, decoded pieces does not pass the hash check. In this way,
an attacker can damage the distribution of a file, leading the receivers to a
useless decoding process (receivers must also request the re-transmission of
the random pieces from the beginning): it is a DoS (Denial of Service). In
the worst scenario, a peer downloads a total amount of data equal to the
size of the original file; then, it discovers that all the data is corrupted and
has to be discarded, leading to a new download process that starts from the
beginning.

4.2.3 DF applied to BT blocks

We are going to describe the corruption propagation phenomenon when using
Digital Fountain applied to blocks. Even in this approach there is a security
problem: A, the attacker, sends out corrupted random blocks. So, when
another peer, B, asks A to upload a random block M , A will answer with M ′ .
When B has collected enough random blocks, it can decode the original piece
(P ). If just one single random block is corrupted, then B will reassemble
the modified piece P ′ . At this point, B realizes that P ′ is not what it wants
because of the failed hash check process; so, it discards all the random blocks
within P ′ and enqueues a new download for the blocks within P . Even in this
approach, B wastes CPU cycle to decode random blocks and bandwidth to
retrieve the same piece at least one more time. However, using this approach
the amount of discarded data is bounded by the piece size: in the worst
scenario, we are going to discard 4× 1024 bytes.

4.3 Proposed solutions

We need to validate blocks (or pieces) as they are used. We are going to
describe a group of solution that can be applied to BitTorrent or BitFountain
with Digital Fountain applied to blocks or pieces.

An initial approach is to pair every block with an hash, calculated by the
transmitter and sent to the receiver. This approach is inapplicable: since
the verification information comes from the transmitter, an attacker could
send a garbled block and calculate its hash correctly; the receiver calculates
the hash and verifies that it’s all correct (the transmission went successfully).
However, the block is still garbled and the decoding/reassembling phase will
does not finish correctly.

We are going to describe a list of possible solution to solve our problems,
their strengths and drawbacks.
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4.3.1 Hash publication

As we said, we could publish the hashes of all the blocks. However, in a
Digital Fountain context, this approach is not applicable.

Indicating with N the number of source blocks, with Digital Fountain we
can construct a number of random blocks equal to:

S =
N∑

k=0

NCk (4.1)

where NCk is the binomial coefficient:

NCk =
(
N

k

)
=

N !
(N − k)!k!

Now, the greatest number of blocks to XOR is N = 256 (corresponding to a
piece size of 4× 1024 bytes). We said in chapter 2 that the worst scenario for
Raptor codes is when the degree is 40, which means 40 input blocks to XOR
together. In this case, the summation of S is truncated to N = 40. This will
result in a S equal to 1.2844× 1047. If we use SHA1 hash, this will require
2.0550× 1049 bytes (1.69985616× 1025 yottabyte) to store all hashes for only
one single piece. This demonstrates that hash publication is not a solution of
our problem.

Hash publication with message passing

If we have the hashes of the all the input data blocks, random block validation
could be done on-the-fly: if we use message passing decoding method, we can
validate a relatively large fraction of the random blocks (those encoded with
Raptor and having a degree equal to 1 – there are many random blocks with
degree unitary). However, this approach has many drawbacks: we can not
use message passing with Random Fountain because their degree is always
greater than 1. In addition, using message passing with Raptor will lead to
an overhead equal to 20% (instead of 2% when we use Gaussian elimination).

4.3.2 Verification function distributive to XOR

We have to design a function to validate every single random block exchanged
by peers. As we know, a random block is an arbitrary number of input blocks
XOR’ed together.

Let’s consider a simple example, denoting M as a random block and X
and Y are two input blocks. So:

M = X ⊕ Y



Proposed solutions 101

The hash of X and Y are published on the torrent file, as BitTorrent specifi-
cation says. We are searching for a verification function f that satisfies the
following equation:

f(M) = f(X ⊕ Y ) = f(X)⊕ f(Y ) (4.2)

In this way, we can validate M by simply verifying the hash of X and Y by
looking for them in the torrent file. The validation function f could be:

• a CRC function. This kind of function solves the problem, because CRC
function are distributive to XOR operation. This function is suitable
to detect unintentional transmission errors. However, one attacker
could simply generate a two messages M1 and M2 with the same CRC,
invalidating our effort. Therefore, this solution is not robust, and thus,
inapplicable.

• a hash function that is distributive to XOR. We are going to demonstrate
that this kind of function is poorly designed and will run into hash
collision very quickly2.

Let’s consider an hash function H which output size is Q bits; let’s also
suppose that this function is distributive to XOR. To begin with, we
randomly generate messages Mi of different sizes, and then we compute
the hash of each message. After we have generated at most Q + 1
messages (one more than the dimension of the vector space) we can
assert that some hashes are linearly dependent, which means that one
of them could be expressed as a linear combination of the other Q
messages:

H(Mx) = A1H(Mi)⊕A2H(Mj)⊕ . . . AQH(Mk)
= H(A1Mi ⊕A2Mj ⊕ . . . AQMk)
= H(My)

(4.3)

where Ai are binary coefficients that could be calculated by solving a
linear equation system. When we have found this combination, we can
identify two different messages (preimages) Mx and My that have the
same hash, leading to a collision. Again, this solution is inapplicable.

4.3.3 Iterative subset decoding

Suppose that we have downloaded a number of blocks (either normal or
random blocks) equal to M , and we use them to reassemble the piece; now

2A hash collision or hash clash is a situation that occurs when two distinct inputs into
a hash function produce identical outputs. All hash functions have potential collisions,
though with a well-designed hash function, collisions should occur less often (compared
with a poorly designed function) or be more difficult to find.
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suppose that the piece does not pass the hash check. This approach consists
in downloading a slightly number of X additional blocks; then, we generate
every subset of the downloaded blocks and we try to iteratively decode every
subset until the reassembled piece pass the hash check. In this way, if some
blocks are corrupted, we do not have to re-download all the blocks: we
download only a subset of all the blocks, hoping that, at some point, we
reassemble the correct piece. Just notice that we have no guarantee that the
decoded piece will pass hash check process; in this way, X is not bounded
and there is not a fixed value for X.

This approach has a main problem when we are dealing with Digital
Fountain. Let’s suppose that we are in the worst scenario for this experiment,
that is a piece size equal to 4× 10242 bytes, corresponding to 256 random
blocks of 16384 bytes each. We denote the minimum number of random
blocks to decode with M . We proceed as follows:

1. we download 256 random blocks.

2. suppose that we can decode these blocks without request additional
blocks, which means that overhead is zero. So, M = 256.

3. we reassemble a piece which does not pass hash check.

4. we select a number of X. For example, we select X equal to 5.

5. we download additional a number of X blocks.

6. we calculate the number every possible decodable subset (B) of all the
received blocks:

B =
(
M +X

M

)
=

(M +X)!
(M +X −M)!X!

=
(M +X)!

X!2

In our case, B = 9.7115 × 109. Using ThunderStorm and Raptor
Fountain codes, we can infer from figure 3.9 on page 86 that we need at
least 1 second to decode 256 blocks. As a consequence, in our case we
need at least B seconds, which means that in the worst case a total of
9.7115×109 seconds to decode a piece. If X = 1, we have that B = 257,
which will lead to a total of 257 seconds to decode. Because of this
waiting time, even with one additional random block, this solution is
inapplicable.

4.4 Distributed validation

Past proposed solutions give one simple hint: verification information must
not come from the sender of the block. So, we designed a peer wire protocol to
validate blocks: we were inspired by the famous Byzantine Generals’ Problem
[14]. Our solution is suitable either for normal BitTorrent and for Digital
Fountain applied to BitTorrent blocks or pieces.
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4.4.1 Operation

Basically, we download blocks as we already did, but we ask to a random
peer to send us the hash for the block (or piece) that we want to validate. If
the hash is equal, then we may assume that the block (or piece) is valid. If
not, we may assume that the block is corrupted and has to be re-downloaded.
In this way we validate every block and we can also detect which peer is
sending bad data, and take countermeasures accordingly. As a consequence,
we avoid to re-download all the blocks within a piece in case of failed hash
check; this will lead to a save of bandwidth.

There are three constraint for the successful application of the algorithm:

• the number of connected peers must be greater or equal to three (one
peer for the upload, one peer for the download and one peer for the
distributed validation).

• the peers who request for hash must send requests to peers who have
that particular block (or piece)3.

• obviously we must ask the validation to a peer whence we did not
downloaded the block. The peer is selected in a random way. This
ensures that two (or more) peers can not cooperate to hijack the
reassembling of the piece.

In the following paragraphs, we suppose that there are two groups of peers
in the network:

• good peers (G) which send clean blocks and answer to validation
requests with the correct hash (confirmative hash).

• bad peers (B) which send corrupted blocks and answer to validation
requests with faked hash (contradictive hash) or do not answer at all.

The network is composed only by good and bad peers (N = B +G). Notice
that we can be deceived by bad peers in believing that a good block is
corrupted (because we do not receive a confirmative hash); being deceived in
believing that a bad block is clean it is much more harder: since we are using
a strong cryptographic hash, there is a negligible probability that another
bad peer confirms a corrupted block. In addition, it is too difficult for a bad
peer to forge a block that has the same hash of one clean block. This means
that it is nearly impossible for a good peer to validate a bad block.

First of all, we introduce some probabilities:

• probability of contacting a good peer: p = G
N .

3This can be easily determined by looking at BitTorrent BITFIELD or HAVE messages,
as we said in chapter 1.
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• probability of contacting a bad peer: q = B
N .

• probability of downloading a good block: p.

• probability of downloading a bad block: q.

• probability of having a good hash confirmation: p.

• probability of having a bad hash confirmation: q.

Obviously, p+ q = 1. We also introduce the round-trip time (RTT), which is
the amount of time it takes for a validation request to get from the sender to
receiver i and then the hash back to the sender); we denote it with Ti.

Although there is still that possibilities of being deceived, we have one
final checkpoint: the hash validation described by the BitTorrent protocol.
In fact, even in the cases described in the previous paragraph, we realize that
something is wrong when the reassembled piece does not pass hash check
process.

We must avoid to discard a good block if it is not confirmed by a bad peer;
thus, it is much more convenient to ask for a validation to another random
peer. So, the main idea of this approach is to make at most R validation
requests. At the end of those requests, if the block is not confirmed, we
might assume that the block is corrupted and we must re-download it. After
sending a request, we wait for a specified time: this is the timeout TO. When
the timeout has passed, we may assume that the request was lost and we can
reiterate the request to another peer. We design two strategies when a peer
asks for a validation:

Serial validation requests We request for the hash of a block to a random
peer:

• if the received hash is equal to the hash computed on the received
block, the block is confirmed and we might assume that is clean.
• if the peer does not answer or the hash is not equal, we reiterate
the algorithm by asking for a validation request to another peer,
until we have reached a total of R validation requests.

Serial validation minimizes the amount of request that a peer makes
during validation process. In the better case, a peer experiences a delay
D at most equal to:

D = T1 (4.4)

where T1 is a confirmative hash. In the worst case, D is at most equal
to:

D = max((T1 + T2 + . . .+ TR), TO) (4.5)

where T1, T2, . . . are RTT of contradictive hashes and TR can be either
the RTT of a confirmative or a contradictive hash (in this case we may
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assume that the block is corrupted and we must re-download it) and TO

is the timeout described before. If a request does not have an answer
until the timeout, the peer proceed in asking the validation to the next
peer.

Parallel validation requests We send R validation requests to R random
peers simultaneously. We wait for the first confirmative hash to proceed.
In this way we minimize the amount of time needed for validating. In
the better case, a peer experiences a delay D equal to:

D = min(T1, T2, . . . , TG) = Tmin (4.6)

where T1, . . . , TG are RTT of confirmative hashes that come from good
peers. Tmin is the answer of the fastest good peer. In the worst case,
the delay D is highly bounded by the timeout:

D = max((T1, T2, . . . , TR, TG), TO) (4.7)

where T1, T2, . . . , TR are RTT of contradictive hashes and TG is the RTT
for a confirmative hash coming from the only slowest good peer that is
answering to our validation request and TO is the timeout described
before.

If we wait for all validation answers to arrive, we can estimate the
percentage of good peers in the network in this way4:

1. a fraction of all the validation answers confirms the received block,
and we denote it with rOK . We assumed that good peers confirms
the block, so:

rOK = R
G

N
(4.8)

2. we can now deduce the fraction of the good peers in the network
from equation (4.8) by dividing the requests which confirm the
received piece with the total number of validation requests done:

G

N
=
rOK
R

(4.9)

Clearly, the greater is R, the smallest is the delay experienced by the
requester, but the greater will be the overhead in sending and receiving
validation messages.

Serial and parallel validation achieve the same probability of validate a
good block (think to the equivalence of sequential and in-block extraction).
The only difference is in timing (parallel is faster) and in the consumption of
the resources (parallel uses much more resources).

4Under the hypothesis that G < B.
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4.4.2 A serial validation example

We describe a simple example of the serial distributed validation algorithm
with R = 3.

• A asks for a block to B.

• B sends back a block5, j.

• A calculates the hash for j (by using its received copy from B) (H(jA =
x)).

• A asks C for the hash6 of j.

• C calculates the hash for j (by using its local copy) and sends the hash
to A (H(jC) = y).

• A compares the two hashes (x == y?):

– if the two hashes are identical (x = y), then A might assume that
j is correct. The algorithm stops.

– otherwise (x 6= y), A must reiterate the request7, asking D for
hash of j:

∗ D calculates the hash for j (by using its local copy) and sends
the hash to A (H(jD) = z).
∗ A compares the hashes that it has for j (x, y, z):
· if the hash received by D confirms the block, A might
assume that j is correct and C has sent a wrong hash.
· if the hash does not correspond, A reiterates the validation
request by asking the block hash to E: if the received
hash confirms the block, A may assume that j is correct
and C and D have sent a wrong hash. Otherwise, A may
now assume that j is corrupted and B has sent a bad
block. It discards the block and re-downloads it. Anyhow,
A stops the algorithm (we have reached R = 3).

4.4.3 A parallel validation example

We describe a simple example of the parallel distributed validation algorithm
with R = 3.

• A asks for a block to B.
5In case of Digital Fountain, A and B both know the bitlist of the random block by

sharing its sequence number.
6In case of Digital Fountain, it is sufficient, for A, to specify the sequence number of j.
7We can not determine if B has sent a faked block or C has sent a faked hash



Distributed validation 107

• B sends back a block, j.

• A calculates the hash for j (by using its received copy from B) (H(jA =
x)).

• A asks to C, D and E for the hash of j.

• C, D and E calculate the hash for j (by using their local copy) and
sends the hash to A (H(jC) = y, H(jD) = z, H(jE) = w).

• A compares the received hashes (x == y == z == w?):

– if any of the three hashes confirm the block (see (4.10)), A may
assume that the block is valid.

x == y ∨ x == z ∨ x == w (4.10)

– otherwise A may assume that the block is corrupted and discards
it. A must re-download the block.

• A stops the validation algorithm because has reached the maximum
number of requests R.

4.4.4 Practical considerations

Let’s suppose that:

• we have downloaded a bad block with (1− p) probability. No peers will
confirm this block, in fact all the R requests do not confirm that block.
Notice that the probability of discarding a good block because it is not
confirmed is equal to the probability of choosing only bad peers during
the download and validation process, which is very negligible and it is
equal to (1− p)R = qR.

• we have downloaded a good block with p probability. We make R
validation requests, and we get pR hash confirms (from good peers)
and qR hash contradicts. Now we want to estimate the average number
of hash contradictions before getting a confirm. In fact, suppose that
we have downloaded a good block: if we get only hash contradictions
from bad peers, we discard a clean block; we must avoid this situation.
So, to receive a hash confirmation (a good answer), we must make an
average number R of requests equal to (with some approximations on
p, remember Geometric distribution mean):

R =
1
p

(4.11)
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In this way, if p = 0.1, R = 10; if p = 0.9, R ≈ 2. Generally speaking, R > 2
is a good choice.

As we said, we want to avoid the situation where a peer download a clean
block and then discards it because of failed validation (in this case the peer
asked for validation hashes only to random bad peers – by the way, it is a
random selection of which peers to ask for validation, so a failure can occur).
The key point is a good selection of the number of requests R. So, to have
an high probability (99.99%) of a confirm (good hash) when the block is
clean, we remember the Geometric cumulative distribution function (with
some approximations on p):

F (X, p) = 1− (1− p)X 0 ≤ p ≤ 1 (4.12)

We deduce X from the following disequation:

F (X, p) > 0.9999

1− (1− p)X > 0.9999

−(1− p)X > 0.9999− 1

(1− p)X < 0.0001

log(1− p)X < log(10−4)
X log(1− p) < −4

Now, remember that log(1− p) is a negative quantity, thus:

X > − 4
log(1− p)

0 < p < 1 (4.13)

From equation (4.13), the number of requests R is equal to:

R ≈ dXe (4.14)

We graphed R on p in figure 4.1 on the next page. In this way, given the
fraction of good peers in the network, if a peer makes at most R requests,
there is a 99.99% probability that we have a block confirm if the block is
clean.

Now, we want to estimate the probability of validate correctly a clean block:
this occur only if we contact at least one good peer (which sends a confirmative
hash) during our distributed validation. We graph this probability with
various values of N and with different values of R in figures 4.2 on page 110
and 4.3 on page 111. Notice that, when choosing which peers ask for a
validation, already contacted peers are excluded from the selection.

4.4.5 Annexes to BitTorrent peer wire protocol

To implement distributed validation, we need a peer wire protocol to ask, to
send and to receive hashes. We can add those messages to already existent
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Figure 4.1: The maximum number of requests to have a 0.9999 probability
to have a hash confirm (if the block is clean).

underneath BitTorrent’s peer wire protocol; in this way, peers exchange block
hashes utilizing the already existent protocol. We designed two messages
to be added in the peer wire protocol. Notice that the specified sizes are
congruent to the size of existent BitTorrent messages and include the size of
the SHA1 hash:

• HASHREQ: <000d><6><[index][begin][length]>
Request for the hash of a block. index, begin and length are 4 bytes
each. In case of Digital Fountain, we use begin

length as sequence number
(bitlist), as we already said in chapter 3.

• HASH: <0009+20><7><[index][begin][block]>
Send a SHA1 hash (20 bytes) of a specified block. This corresponds to
a HASHREQ message sent by the recipient earlier. index and begin are
4 bytes each. In case of Digital Fountain, we use begin

length as sequence
number (bitlist), as we already said in chapter 3.

4.4.6 Validation timing

Validation process (either for normal or Digital Fountain approach) triggers
an important question: when we have to validate received blocks? We have
two choices:
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(a) N = 10, R varying from 1 to 5.

(b) N = 100. R varying from 1 to 5.

Figure 4.2: A comparison of the probability of validating a clean block
correctly with different values of R. In these plots, we are
considering small P2P networks (N = 10, 100).
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(a) N = 1000. R varying from 1 to 20.

(b) N = 10000. R varying from 1 to 20.

Figure 4.3: A comparison of the probability of validating a clean block
correctly with different values of R. In these plots, we are
considering large P2P networks (N = 100, 1000).
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• pre-validation.

• after-validation.

Every approach has its strengths and drawbacks. Let’s discuss them.

Pre-validation

With a pre-validation approach, we validate every single block received using
the distributed validation described before.

Strengths

• the reassembled piece will always pass the hash check process (if we
suppose that we were not deceived during the validation process).

• in case of Digital Fountain, decoding is only executed once, thus we do
not waste computational power uselessly.

Weaknesses

• the validation process will certainly run into modest delay (because of
request and answer for hash), even if all the blocks are correct.

After-validation

In this approach, we validate all the blocks within a piece only if the reassem-
bled piece does not pass the hash check.

Strengths

• we do not experience delay if the received blocks are all correct.

Weaknesses

• in case of Digital Fountain we are going to invoke the decoding process
at least twice.

Considerations Let’s suppose that we use after-validation and we are in
the worst scenario for this experiment, that is a piece size equal to 4× 10242

bytes, corresponding to 256 blocks of 16384 bytes each. No matter if they
are normal block or random block. Denoting with c the number of corrupted
blocks, we compare BitTorrent with BitFountain with distributed validation
(see figure 4.4 on page 114):

• in BitTorrent, if just one single block is corrupted, the client will discard
all the 256 blocks. So, the total amount of data to re-download t ranges
from 0 bytes (when c = 0) to 4× 10242 bytes (when c 6= 0).
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• in BitFountain, t depends on how many blocks are corrupted. Suppose
that we discriminate if every block is corrupted or not by using only
one request-for-hash round, and then we re-download every corrupted
block. The total amount of data could be easily calculated:

t = 16384c+ 256(13 + 29)

where t is the total amount of data to re-download, 16384c is the
total amount of bytes to be re-downloaded and (13+29) are the bytes
corresponding to a hash request and answer. In this case, t ranges from
10752 bytes (when c = 0) to 4× 10242 + 10752 bytes (when c = 256).

Figure 4.4 on the next page shows the difference between the two approaches.
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(a) A validation approach saves a lot of bandwidth.

(b) A semilogy chart emphasizes the difference between unconditional discard and selective
re-download.

Figure 4.4: A comparison of BitTorrent and BitFountain with distributed
validation.
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Conclusions and future
developments

5.1 Conclusions

At the end of this work we have two products:

• ThunderStorm, a quick and fast Digital Fountain library which includes
the cutting edge technology of Fountain Codes (Raptor codes). Thun-
derStorm can decode every code with a binary matrix in GF(2). The
library is also extensible, allowing developers to include other kind of
Fountain Codes very easily.

• BitFountain, a BitTorrent client which exchanges random blocks, en-
coded and decoded using Random or Raptor Fountain Codes. This
client takes advantage on BitTorrent client because it can download
more blocks in parallel from more peers than normal BitTorrent, leading
to a faster reassembling of the piece. Also, when a client loose some
incoming requests for blocks, BitFountain client does not reckon if
it happens: as we said, the only matter is downloading a number of
random blocks enough to invoke decoding process successfully. Bit-
Fountain also allows the implementation of a torrent distribution with
UDP because we can recover the losses. Tribler developers recently
developed a BitTorrent client that uses UDP: at application level they
have implemented a timeout mechanism and ARQ like TCP, obtaining
the same speed as using TCP (but they are using lighter sockets than
UDP, bypassing OS limitation on TCP connections). µTorrent devel-
opers are moving in the same direction: in a new alpha version of the
popular BitTorrent client, UDP has been made the default instead of
TCP. Summarizing, there is a global interest in BitTorrent for real-time
communication. In order to use resources efficiently and minimize
latency, these applications should use BitTorrent over UDP rather than
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TCP.

In addition, we have also studied a distributed validation protocol which is
suitable for BitTorrent or BitFountain. We designed it to validate random
blocks (since it is impossible to publish all the possible random blocks)
and also to save bandwidth when some BitTorrent/BitFountain blocks are
corrupted.

This is only the beginning of this project: first of all this thesis is the most
complete and detailed specification of the BitTorrent protocol. Then, we
have designed the characteristics of the future BitFountain client. BitTorrent
developers came up with some interesting ideas [47] [48] to counter the
weaknesses in BitTorrent protocol that we have identified, but their ideas do
not have the power of erasure codes. We do believe that the development of
this client has to be done in a quickly way following the design that we have
described. Showing our results persuade developers to join this project.

5.2 Future developments for ThunderStorm

In the following paragraphs we are going to illustrate how we can improve
ThunderStorm performances.

5.2.1 Reduce XOR operations

The Gaussian elimination algorithm implemented in BitFountain can be
improved: in fact, when we receive a random block with its bitlist, we insert
them in the decoding matrix without conditions; if we want to improve the
speed of ThunderStorm, we must compare the already inserted bitlist with
the inserting bitlist. In order to lessen the XOR operations, we must insert
(or leave) the bitlist with less 1’s in the decoding the matrix.

5.2.2 Support for tail block

In the current implementation, ThunderStorm require that all input blocks
have the same size. However, in BitTorrent, there is an high probability that
there is a tail piece (and consequently a tail block, see figure 5.1 on the facing
page): BitFountain solves this matter by not encoding and decoding the last
piece and use BitTorrent’s normal transmission and receiving methods. In
the future, ThunderStorm will support tail blocks by performing a sort of
virtual padding: in case of tail block, ThunderStorm pads the last block and
then creates the encoded random block. The padding is only virtual, which
means that no padding data will be transferred over the wire (it is a waste of
bandwidth). On receiver side, the decoder reassemble the piece using random
blocks, and then removes the padding. Obviously, encoder and decoder must
synchronize together on the size of the padding.



Future developments for BitFountain 117

Figure 5.1: In BitTorrent, tail piece is the latest piece (and consequently
we have a tail block). This occurs if the download size is not a
multiple of the piece size.

5.2.3 Using ctypes for data intensive operations

ThunderStorm can be easily profiled using cProfile, a Python profiler written
in C. As you can imagine, even from figure 3.9 on page 86, XOR operation
is the main CPU intensive operation in ThunderStorm, written in Python.
CPython is most-widely used implementation of Python and it written in
C. To speed up XOR operation, we can use ctypes, that is an advanced
FFI (Foreign Function Interface) package for Python. In other words, ctypes
allows to use C from Python programs. In this way, ThunderStorm maintains
its tight structure and use ctypes to XOR data using C; this will allow
ThunderStorm to achieve lower encoding and decoding time.

5.2.4 Extend ThunderStorm

Since we designed ThunderStorm with evolution in mind, developers can
integrate other types of Fountain Codes very easily. Because Raptor codes are
the cutting edge technology in Fountain Codes, there is no reason to innovate
at this moment. However, in the future there will be room for improving
(adding the newest Fountain codes that will come up).

5.3 Future developments for BitFountain

In BitFountain there is large room for improvement: as we said, we have
completely designed it; however, we developed a fraction of the total big
picture that we had in mind.

5.3.1 UDP sockets

First of all, we must change BitFountain to use UDP sockets instead of TCP
ones. The BitTorrent version that we have modified to build BitFountain is
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the 4.4.0, which uses twisted1 to handle connections (previous versions of
BitTorrent do not use twisted, using the Python sockets methods). Twisted
is an event-driven network programming framework written in Python, which
means that users of Twisted write short callbacks which are called by the
framework. In this way it will be very straightforward to change BitFountain
sockets from UDP to TCP.

On the other side, Tribler developers are designing a BitTorrent protocol
which could exploit the currently unused potential of peers behind NAT
firewall. This means building the TCP functionality in user-space on top of
UDP with NAT firewall puncturing for HD streaming.

5.3.2 Endgame mode

As we said in chapter 3, BitFountain can be in endgame mode during the
whole process of downloading. In fact, this will guarantee that all unchoked
peers send random blocks to the client, leading to a faster download process.
The client must not send CANCEL messages during download, because we do
want “duplicates” (remember: in Digital Fountain, there are not duplicates,
only useful blocks). We are only required to send CANCEL messages when a
piece is reassembled correctly, to stop other peers from sending us additional
(and only in this case useless) blocks for that piece. Lost requests do not have
to be handled: as we said, in Digital Fountain it is not important if some
blocks are lost. So, the most interesting thing of this approach is to estimate
the total number of requests that we can send in parallel, basing on the
estimated loss percentages: for example, if we need N blocks and we expect
that only a fraction 1

Z of our block requests will be answered, we request for
NZ random blocks to NZ peers. In this way we receive N random blocks
and we reassemble the original information.

5.3.3 Digital Fountain on various data levels

We have implemented BitFountain by applying Digital Fountain encoding
and decoding blocks within the same piece, obtaining random blocks. There
are more alternative approaches that can be implemented:

1. Fountain codes applied to all data pieces, obtaining random pieces (see
chapter 3).

2. Fountain codes applied to all data pieces, obtaining random pieces and
then reiterate the encoding on all blocks within the same random piece,
obtaining random blocks.

3. Fountain codes applied to all data block of chosen data pieces, obtaining
random blocks. To generate a random block, we reiterate the encoding
on the random blocks generated on the previous step.

1A framework for networked applications. http://twistedmatrix.com/trac/.

http://twistedmatrix.com/trac/
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That being said, we could visualize the third approach as a cascading technique
composed by the second approach followed by the first one; in the same way,
the fourth approach can be seen as a cascading procedure composed by the
first approach followed by a procedure that resembles the second technique.

5.3.4 Extend the peer wire protocol

We designed, in chapter 4, a distributed validation approach; we have also
designed an extension to BitTorrent protocol to allow the exchanging of
the validation messages. To save bandwidth even in BitTorrent and in
BitFountain approach, and to also guarantee block (or piece) integrity, we
need to implement this validation approach in BitFountain.

5.3.5 Development of error correction with Digital Fountain

Digital Fountain can also correct errors. In this case, the iterative subset
decoding (see chapter 4) is a suitable solution to validate blocks (we correct
blocks using blocks, in this way we eliminate corrupted blocks). As an
example a simple error correction algorithm will be illustrated: hard-decision
majority voting.

1. every parity bit send an estimate of the correct value to each connected
data bit; for a given bit the correct value is the XOR of the parity and
all others connected bits.

2. every data bit receive the estimate from each connected parity bit (and
from the channel, the previous value) and takes an hard-decision using
majority voting (the next value).

The loop is repeat until all checks are satisfied (no flipping in step 2) or until
a maximum number of iterations is reached. A more sophisticated algorithm
uses soft values e.g. floating point values ranging from −1 (certainly zero), 0
(maximum uncertainty), to +1 (certainly one).

Now, we can also erasure recovery with message passing: each parity bit
form a group with its connected data bits. If one data bit is missing in the
group, it can be recovered by XOR’ing the parity and remaining connected
data bits (if more than one data bit is missing, no recovery can be done).
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Summary (in Italian)

Capitolo 1: P2P e BitTorrent

In questo capitolo illustriamo le reti peer-to-peer (P2P), per cui si intende
una rete di computer o qualsiasi rete informatica che non possiede nodi
gerarchizzati come client o server fissi (clienti e serventi), ma un numero di
nodi equivalenti (pari, in inglese peer appunto) che fungono sia da cliente
che da servente verso altri nodi della rete. Questo modello di rete è l’antitesi
dell’architettura client-server. Mediante questa configurazione qualsiasi nodo
è in grado di avviare o completare una transazione. I nodi equivalenti
possono differire nella configurazione locale, nella velocità di elaborazione,
nella ampiezza di banda e nella quantità di dati memorizzati. L’esempio
classico di P2P è la rete per la condivisione di file (file sharing), ma non solo.

Inoltre, introduciamo anche il protocollo BitTorrent, un protocollo peer-
to-peer (P2P) che consente la distribuzione e la condivisione di file su Internet.
A differenza dei tradizionali sistemi di file sharing, l’obiettivo di BitTorrent è
di realizzare e fornire un sistema efficiente per distribuire lo stesso file verso il
maggior numero di utenti disponibili sia che lo stiano prelevando (download)
che inviando (upload). Si tratta quindi di un meccanismo per coordinare in
automatico il lavoro di moltitudini di computer, ottenendo il miglior beneficio
comune possibile. Dato che esiste scarsa documentazione (ufficiale o meno)
che spieghi in dettaglio il protocollo BitTorrent, nella seconda parte del
capitolo illustriamo nei minimi dettagli il funzionamento e il protocollo dei
client BitTorrent.

Capitolo 2: Codici a fontana digitale

La trasmissione dell’infomazione su un canale disturbato da un rumore è un
famoso problema nell’ambito della teoria dell’informazione. Essa propone
come soluzione la cosiddetta codifica di canale, ovvero una rappresentazione
espansa dell’informazione, cosicché la ridondanza introdotta mitighi la corru-
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zione dei dati. All’interno di questo capitolo si tratteranno alcune codifiche
di canale esistenti, illustrando pregi e difetti di ciascuna, fino ad introdurre il
concetto di fontana digitale. Una fontana digitale è un codice quasi ottimale
che, dato un set di K simboli di ingresso, produce uno stream potenzialmente
infinito di simboli in uscita, ottenuti con la combinazione lineare di parte
dei simboli di input. I simboli di input possono essere bit o sequenze di bit
aventi lunghezza fissa e l’operazione di somma corrisponde allo XOR bit a bit.
La scelta dei simboli di input che prendono parte allo XOR per la creazione
del simbolo di uscita è tipicamente guidata da una distribuzione casuale,
che determina quanti e quali simboli partecipano. Il trasmettitore divide
il dato in K blocchi, che vengono messi in XOR fra di loro in vario modo
per formare N pacchetti, inviati sul canale. Ad ogni istante il trasmettitore
può generare pacchetti supplementari, semplicemente calcolando una nuova
combinazione lineare fra i blocchi. All’altro capo, il ricevitore si mette in
ascolto e colleziona K ′ pacchetti, poi lascia la trasmissione e decodifica i
K blocchi del dato originale. Lungo il percorso che collega ogni client al
server, si possono verificare errori e anomalie che portano alla perdita di
pacchetti sempre diversi per ogni client. Grazie alle proprietà delle fontane
digitali, questa perdita non è un problema e non necessita di un meccanismo
di ritrasmissione, in quanto al client basta recuperare K ′ pacchetti qualsiasi
per la ricostruzione del file. Questo meccanismo, per il quale i ricevitori
non necessitano di un canale di feedback, è chiamato FEC (Forward Error
Correction).

Capitolo 3: BitFountain

L’obiettivo di questa tesi è quello di integrare il meccanismo delle fontane digi-
tali in un client BitTorrent. L’integrazione è possibile applicando la codifica (e
la relativa decodifica) ai due livelli di gestione dei dati di BitTorrent: a livello
di piece o a livello di block. Abbiamo scelto di applicare le fontane digitali
XORando casualmente i blocchi di uno stesso pezzo. Continuiamo quindi
con il design di un client, chiamato BitFountain (BitTorrent + Digital
Fountain) che prevede l’utilizzo di UDP anziché TCP (connessioni molto
più leggere per il sistema operativo, non c’è ritrasmissione, non garantisce
l’ordine di arrivo, prevede delle perdite – caratteristiche che sono ideali per
l’applicazione di fontane digitali). Inoltre, il client può funzionare sempre in
modalità endgame, richiedendo tutti i blocchi a tutti i peer connessi. Nel
caso di BitTorrent “normale”, questo porta al download di blocchi duplicati
(e, di conseguenza, i client mandano messaggi CANCEL per evitare di scaricare
blocchi duplicati). Nel caso di fontane digitali, invece, non esistono blocchi
duplicati: tutti i blocchi sono utili. Quindi, in modalità endgame si massi-
mizza il numero di blocchi che il client riceve, garantendo così un più rapido
download rispetto ai client BitTorrent normali. Per realizzare BitFountain
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abbiamo scritto una libreria di codifica e decodifica a fontana digitale in
Python. Tale libreria, chiamata ThunderStorm, permette di codificare e
decodificare codici a fontana digitale del tipo Random e del tipo Raptor (lo
stato dell’arte). Inoltre, abbiamo integrato tale libreria in un client BitTorrent
4.4.0 Mainline, producendo un prototipo iniziale che scambia blocchi casuali
di fontana digitale codificati utilizzando la libreria ThunderStorm. Il client
è compatibile con i client BitTorrent normali, scambiando blocchi normali
quando si connette ad un client normale e scambiando blocchi codificati
quando si connette ad un client Fountain capable.

Capitolo 4: Security

Lo scambio di blocchi random apre un’interessante problema di sicurezza:
nel caso in cui i blocchi siano corrotti (volontariamente o meno), il decoder
ricostruisce un oggetto diverso da quello di partenza. In questo modo un
attaccante potrebbe impedire o sabotare il download semplicemente immet-
tendo sulla rete dei blocchi falsi. Abbiamo quindi studiato diversi schemi di
protezione contro questi attacchi, valutandone pregi e difetti di ognuno. La
pubblicazione degli hash è impossibile: dato che si devono considerare tutte
le possibili combinazioni di blocchi in input (ricordiamo che il processo di
codifica sceglie casualmente dei blocchi in input e ne fa lo XOR), si dovrebbe
pubblicare un numero elevato di hash (nell’ordine degli yottabyte nel caso
peggiore). L’unica soluzione attendibile è un protocollo di validazione distri-
buito: una volta ricevuto un blocco, si richiede l’hash di tale blocco ad un peer
diverso da quello da cui si è ricevuto il blocco, e scelto in modo totalmente
casuale. Se si riceve un hash che conferma il blocco, si può assumere che il
blocco sia valido e l’algoritmo termina; altrimenti si ripete la richiesta ad un
altro peer fino ad arrivare ad un massimo di hash ricevuti che non confermano
il pezzo. In questo caso il blocco è corrotto e va riscaricato. La verifica può
essere svolta in seriale o in parallelo; dato che usiamo un hash crittografico, è
molto difficile che un peer malintenzionato possa costruire ad-hoc un blocco
falso che abbia lo stesso hash di un blocco valido (e quindi è molto difficile che
un peer buono validi un blocco non valido). L’algoritmo può essere invocato
sia ad ogni ricezione di un blocco oppure soltanto nei casi in cui il pezzo
ricostruito dà luogo ad un failed hash check. Inoltre, l’algoritmo di validazione
distribuita che proponiamo è adatto anche ai client BitTorrent, che scartano
tutti i blocchi nel caso in cui il pezzo ricostruito non passi il processo di hash
check. In entrambi i casi (BitFountain e BitTorrent normale), si riscaricano
solo i pezzi non validi: questo si traduce in un migliore utilizzo della banda
disponibile.
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Capitolo 5: Conclusioni e sviluppi futuri

Molto è stato fatto e molto rimane da fare. Abbiamo gettato le basi per
il futuro sviluppo di questo progetto: innanzitutto, abbiamo creato una
libreria di codifica e decodifica che include lo stato dell’arte per quanto
riguarda i codici a fontana digitale. Poi, abbiamo iniziato a delineare il client
BitFountain integrando tale libreria all’interno di un client torrent.

La libreria è stata creata tenendo conto degli sviluppi futuri: è molto
facile, infatti, includere un nuovo tipo di codifica e decodifica. Inoltre, la
libreria può essere resa più veloce integrando opportune ottimizzazioni [39] e
utilizzando codice C per le operazioni di XOR.

Per quanto riguarda BitFountain, invece, si devono implementare le idee
che abbiamo discusso nei capitoli precedenti, come ad esempio l’utilizzo di
UDP anziché TCP, l’utilizzo della modalità endgame, l’applicazione delle
fontane digitali non solo ai blocchi ma anche ai pezzi, e così via.
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